

Adsorption of phenolic compounds from olive mill wastewater using a novel low cost biosorbent

L. Papaoikonomou, K. Labanaris, K. Kaderides, A.M. Goula

Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University, 541 24 Thessaloniki, Greece

6th International Conference on Sustainable Solid Waste Management, Naxos 2018

Introduction

Olive oil production

Olive collection and purification

Olive crashing

Mixing

Oil separation

- Traditional pressing
- 2 phase centrifugal extraction system
- 3 phase centrifugal extraction system

(Klen & Vodopivec, 2012)

Olive oil production

Traditional pressing

A solid fraction, "olive husk", is obtained as a by-product and an emulsion containing the olive oil.

The olive oil is separated from the remaining olive mill wastewater by decanting

3-phase centrifugal extraction system

Predominant process in modern olive mills

- Two streams of waste
 - i. a wet solid cake (~30% of raw material) called "Olive Cake"
 - ii. a watery liquid (50% of raw material) called <u>O</u>live <u>M</u>ill <u>W</u>astewater (OMW)

2-phase centrifugal extraction system

"Ecological" method which reduces the olive mill waste by 75%

- Two fractions
 - i. a solid called "Alperujo" or "Olive Wet Husk" or "Wet Pomace" or <u>Two-Phase Olive Mill Waste (TPOMW)</u>
 - ii. a liquid (Olive Oil)

Olive oil extraction systems

(Alburquerque et al., 2004)

(Caputo et al., 2003)

Olive Mill Waste Management

Potential source of phenolic compounds and other natural antioxidants!

- **Pollution** of natural waters
- Threatening the aquatic life
- Offensive odors

(Tsagaraki et al., 2007; Goula et al., 2016)

Olive Mill Waste Composition

	C	Dlive mill by-pr	oduct	Deference	
Characteristic	OMW	Olive cake	TPOMW	Reference	
рН	2.2-5.9	-	4.9-6.8	Galiatsatou et al., 2002; Dermeche et al., 2013	
Total carbon (%)	2.0-3.3	29.0-42.9	25.4	Vlyssides et al., 1998; Garcia-Castello et al., 2010	
Organic matter (%)	57.2-62.1	85.0	60.3-98.5	Aktas et al., 2001; Vlyssides et al., 2004	
Total nitrogen (%)	0.63	0.2-0.3	0.25-1.85	Saviozzi et al., 2001; Di Giovacchino et al., 2006; Dermeche et al., 2013	
Ash (%)	1.0	1.7-4.0	1.4-4.0	Vlyssides et al., 1998; Di Giovacchino et al., 2006; Lafka et al., 2011	
Lipids (%)	0.03-4.25	3.50-8.72	3.76-18.00	Vlyssides et al., 1998; Paredes et al., 1999; Di Giovacchino et al., 2006; Dermeche et al., 2013	
Total sugars (%)	1.50-12.22	0.99-1.38	0.83-19.30	Vlyssides et al., 1998; Caputo et al., 2003; Vlyssides et al., 2004	
Total proteins (%)	-	3.43-7.26	2.87-7.20	Vlyssides et al., 1998; Alburquerque et al., 2004	
Total phenols (%)	0.63-5.45	0.200-1.146	0.40-2.43	Vlyssides et al., 1998; Caputo et al., 2003; Dermeche et al., 2013	
Cellulose (%)	-	17.37-24.14	14.54	Vlyssides et al., 1998	
Hemicellulose (%)	-	7.92-11.00	6.63	Vlyssides et al., 1998	
Lignin (%)	-	0.21-14.18	8.54	Vlyssides et al., 1998	

OMW Phenolic Compounds

Recovery of functional components-Adsorption

Transfer of a solute from either a gas or liquid/solution to a solid. The solute is held to the surface of the solid as a result of intermolecular attraction with the solid molecules.

- \checkmark The best, effective, low-cost and frequently used method
- ✓ The profitability depends mainly on the <u>adsorption</u> <u>efficiency</u> and on the <u>recovery rates</u> during desorption

Adsorption stages & Mechanisms

Exchange Adsorption (Ion exchange)

Electrostatic due to charged sites on the surface

Physical adsorption

Van der Waals attraction between adsorbate and adsorbent **Reversible process**

Chemical adsorption

Chemical bonding between adsorbate and adsorbent Strong attractiveness Irreversible process

Adsorbents & Biosorbents

- ✓ Oxygen Containing Compounds (Silica gel, zeolites)
- ✓ **Carbon Based** Compounds (Activated carbon, graphite)
- ✓ **Polymer Based** Compounds (Polymers, resins)

Adsorbents used for OMW phenolics recovery

Biosorbents used for various compounds' recovery

Adsorbent	Yield (%)	Reference	Biosorbent	Recovery	Yield (%)	Reference
XAD-4	3.5-97.5		Pine wood char	Pb, Cd, Ar	3-54	
XAD-16	4.5-99.0		Oak bark char	from water	26-98	Dinesh Mohan et al., 2007
FPX-66	4.5-98.0	Kaleh et al., 2016		Cd from water	77.0-89.2	
PVPP	0.9-100		Banana peel	Pb from water	76.0 -58.3	Jamil et al., 2010
AF5	31.7-91.4		2 p	Cr from leather	99.1-100	I. 1. 1. 2000
AF6	90-100			tanning		Jamil et al., 2008
PAC	93.5-100			Direct red from	55-80	
Zeolite	37-45		Banana pith	water		Namasivayam, 1998
Bentonite	29-45	Santi, 2008	L	Acid brilliant blue from water	65-95	- · ·
Banana peel	34 -66	Achak et al., 2009		Textile dve		
Wheat Bran	12-63	Achak et al., 2014	Apple pomace	effluent	91-100	Robinson et al., 2001

Biosorbents

Banana peel

✓ Low cost

- ✓ Environmentally friendly
- ✓ Removal of cadmium and lead from water (Anwar et al., 2010) and

phenolic compounds from OMW (Achak et al., 2009)

	Maximum yield conditions					
	Cd (II)	Phenolic compounds				
Initial concentration	50 μg/mL	50 μg/mL	13.45 g/L			
pH	3	5	8-11			
Time	20 min	20 min	3 h			
Temperature (°C)	25	25	30			
Stirring speed (rpm)	100	100	200			

Fig. 2. SEM images for original banana peel and (b) SEM images for banana peel after adsorption.

(Achak et al., 2009)

BEFORE

SE

ZØ

Objectives

1. Exploitation of pomegranate seed (by-product of juice industry) as a **biosorbent** for the recovery of phenolic compounds from liquid olive mill waste

2. Optimization of batch and continuous adsorption process

3. Development and proposal of a novel, **low cost** method for the recovery of phenolic compounds and their **exploitation** as **food additives** in food industry

Materials & methods

Pomegranate seed

- ✤ 14 % of pomegranate fruit
- ✤ Juice industry by-product
- ✤ Low cost
- ✤ Use as animal feed
- ✤ Phenolic content: 0.25%

Chemical composition of pomegranate seed (dry basis with 8.6 % water content)

Component	Value	Component	Value
Fibers (%)	35.3	Potassium (ppm)	45.2
Fat (%)	27.2	Magnesium (ppm)	12.4
Proteins (%)	13.2	Sodium (ppm)	6.0
Pectins (%)	6.0	Ferrum (ppm)	1.3
Sugars (%)	4.7	Copper (ppm)	1.2
Ash (%)	2.0	Zinc (ppm)	1.0

(El-Nemr et al., 1990; Dadashi, Mousazadeh, Emam-Djomeh, & Mousavi, 2013)

Pomegranate seed preparation

Experimental set-up for adsorption process

Batch operation

18/35

Continuous operation

Factors affecting adsorption

Integrated process of OMW phenolics' adsorption on pomegranate seed 20/35

Experimental design

		Parameters Levels	Yie	eld (%) = $\frac{C_0 - C}{C} \times 100$		
T (ºC)	рН	Adsorbent/OMW ratio (r, g/mL)	Initial phenolics concentration in OMW (C ₀ , mg/L)	Mean diameter of adsorbent particles (d _p , mm)	C ₀ :	Initial phenolics
20	4.00	0.01	50.0	0.149		concentration in OMW
30	5.00	0.02	162.5	0.410	C .	Domoining alteration
40	6.00	0.03	275.0	0.664	C:	Remaining phenolics
50	7.00	0.04	387.5	0.922		concentration in OM w
60	8.00	0.05	500.0	1.180	_	alter adsorption

Adsorption kinetics

Pseudo-first order

 $\ln(q_e - q_t) = \ln(q_e) - k_1 t$

Pseudo-second order

Difussion model

$$q_t = k_p t^{\frac{1}{2}} + C$$

- $\mathbf{q}_{\mathbf{e}}$ (mg/g): the amount of phenolic compounds adsorbed at equilibrium
- $\mathbf{q}_{\mathbf{t}}$ (mg/g): the amount of phenolic compounds adsorbed at any time, t (min)
- K_1 (min⁻¹): the equilibrium rate constant of pseudo-first-order sorption
- K_2 (g/g min): the rate constant for pseudo-second-order kinetics
- **q**_t (mg/g): the amount of phenolic compounds adsorbed at equilibrium at time, t (min)
- $\mathbf{k_p}$ (g/g min¹/₂): is the intraparticle diffusion rate constant
- C (mg/g): the intercept

(Achak et al., 2009)

Adsorption isotherms

* Langmuir Isotherm

Freundlich Isotherm

$$\ln q_e = \ln K_F + \frac{1}{n \ln C_e}$$

Temkin Isotherm

$$q_e = \frac{RT}{B_T} \ln K_T + \frac{RT}{B_T} \ln C_e$$

- $C_e(g/L)$: the amount of the unadsorbed phenolic compounds concentration in solution at equilibrium
 - $\mathbf{q}_{\mathbf{e}}$ (mg/g): the amount of adsorbed phenolic compounds per unit weight of adsorbent at equilibrium.
- b (L/g): the equilibrium constant or Langmuir constant related to the affinity of binding sites
- **Q**_m (mg/g): represents a particle limiting adsorption capacity when the surface is fully covered with phenolic compounds and assists in the comparison of adsorption performance
- K_F : Freundlich constant that shows adsorption capacity of adsorbent
- **n**: constant which shows greatness of relationship between adsorbate and adsorbent
- **B**_T (kJ/mol): heat of sorption
- **K**_T : Temkin isotherm parameters

(Achak et al., 2009; Anwar et al., 2010)

Activation of biosorbent

1. Chemical activation

2. Thermal activatin (Drying of biosorbent for 2-3 h)

100 °C

150 °C

200 °C

250 °C

Desorption of phenolic compounds from the biosorbent

25/35

Results

Maximum adsorption yield

Time, t (min)	10
Temperature, T (°C)	30
рН	5
Biosorbent/OMW, r (g/ml)	0.02
Initial phenolic concentration, $C_0 (mg/L)$	162.5
Mean diameter of biosorbent particles, d_p (mm)	0.922
Yield (%)	92.8

Factors Affecting Adsorption Process

Kinetics of Adsorption

Kinetic model	R ²	R _{adj} ²	SSE	Pseudo first order model
Pseudo- first order	0.698	0.598	18.0013	200 -
Pseudo- second order	0.653	0.537	19.8738	150 - 100 -
Diffusion model	0.497	0.328	27.5700	Y Data
$\ln(q_e - q_t)$	$= \ln(q_e)$) – k ₁ t		0 - -50 - -100 -
				-150 0 5 10 15 20 25 X Data
$q_t = q_e -$	q _e (e ^{-k}	^{1^t)}		 x column vs y column x column vs y column 95% Confidence Band 95% Prediction Band

Kinetics of Adsorption

Adsorbent	Adsorbate	Qm (mg/g)	<i>b</i> (L/g)	KF	n
Activated coal	Phenol	1.84	0.065	0.79	0.79
Resin AP-246		0.071	0.584	0.112	0.35
Resin OC-1074		0.043	0.445	0.0053	0.16
Carbonised beet pulp	Phenol	♦	♦	29.35	5.13
Hydroxyapatite	Phenol	♦	♦	0.37	1.66
Coconut shell	Phenol	205.84	3.91	37.11	3.66
Aged-refuse	Phenol 2-Chlorophenol 4-Chlorophenol 2,4-Dichlorophenol	 ○ ○ ○ ○ 	 ♦ ♦ ♦ ♦ 	0.019 0.042 0.195 0.180	1.19 1.22 1.59 1.50
Palm pith carbon	2,4-Dichlorophenol	19.16	0.70	•	*
Paper mill sludge	2,4-Dichlorophenol	4.49	0.003	•	*
Banana peel	Phenolic compounds	688.9	0.24	0.13	1.13

◊ Does not follow Langmuir isotherm/not reported. *Does not follow Freundlich isotherm/not reported.

(Achak et al., 2009)

Biosorbent Activation

Desorption of phenolics from the biosorbent

\checkmark	Selection	of	maximum	yield	experiment
--------------	-----------	----	---------	-------	------------

Conditions: 10 min

30 °C pH 5 r = 0.02 g/mL OMW $C_0 = 162.5 \text{ mg/L}$ $d_p = 0.922 \text{ mm}$

Water pH 7

Alkaline water pH 12

Acetic acid 50% pH 1.2

		Desorption perce		
	Water pH 7	Alkaline water pH 12	Acetic acid 50% pH 1.2	Adsorption Mechanism
Not activated biosorbent	-	42.0%	73.2%	Chemical adsorptiom
Chemical activated biosorbent	-	39.3%	45.9%	Chemical adsorptiom
Thermal activated biosorbent	-	-	8.1%	Chemical adsorptiom

Conclusions

- **Pomegranate seed** by product has proven to be a promising material for the recovery of phenolic compounds from olive mill wastewater (OMW).
- The **maximum** yield of the batch adsorption process was **92.8%**, achieved in 10 min, at 30 °C, pH 5, $r = 0.02 \text{ g/mL OMW}, C_0 = 162.5 \text{ mg/L and } d_p = 0.922 \text{ mm}.$
- The most likely adsorption mechanism for the adsorption process seemed to be chemical sorption.
- The most effective activation method of the pomegranate seed was the thermal activation (250 °C for 2-3 h).
- **Pseudo-first order** kinetic model described better the adsorption process.
- Adsorption isotherms studies showed that the adsorption isotherm that described the adsorption process better was the Langmuir isotherm.

Thank you for your attention