EFFECT OF ALKALINE PEROXIDE PRETREATMENT ON FIBRE COMPOSITION OF VARIOUS LIGNOCELLULOSIC RESIDUES

Universidad de Cádiz

Cristina Marzo, J. Álvarez, A.B. Díaz, I. Caro, A. Blandino

University of Cádiz (Spain)

INTRODUCTION

University of Cádiz (Spain)

INTRODUCTION

Biotechnological process

University of Cádiz (Spain)

INTRODUCTION

Alkaline hydrogen peroxide pretreatment

- This pretreatment is an oxidative process which could significantly improve biomass digestibility.
- It selectively removes lignin and deconstructs the cell walls.

MATERIAL AND METHODS

UNIVERSITY OF CÁDIZ (SPAIN

E-MAIL: CRISTINA.MARZO@UCA.ES

MATERIAL AND METHODS

All the solids were milled and sieved

Particle size

- 0 0.5 mm
 0.5 1 mm
 1 1.5 mm
- 1.5 2 mm

Exhausted sugar beet cossettes (ESBC)

Particle size

• 0.5 – 1 mm

Sunflower stalk (SS)

Wheat straw (WS)

University of Cádiz (Spain)

MATERIAL AND METHODS

Alkaline hydrogen peroxide pretreatment

MATERIAL AND METHODS. FIBRE COMPOSITIONAL ANALYSIS

- The determination of acid detergent fibre (ADF) and acid detergent lignin (ADL) according to EN ISO 13906:2008
- The determination of amylase treated neutral detergent fibre (NDF) according to AOAC 2002:04/ISO 16472:2006.

Code	Sample fraction	Compliant substances	Denomination
Α	removed with acetone	Fats, oils, wax	fats
B+C	removed with neutral detergent	Proteins, enzymes, pectins, soluble salts, etc.	Salts and no cellulosic
В	no calcined removed	soluble salts	Salts
С	calcined removed	rest of removable material no saline	no cellulosic
D	removed with acid detergent	Hemicellulose, etc.	Hemicellulose
E	removed with concentrated acid	Cellulose, soluble lignin	Cellulose
D+E	removed with acid	hemicellulose, cellulose and soluble lignin	Cellulose and Hemicellulose
F	calcined not removed	insoluble lignin, etc.	Lignin
G	not calcined and not removed	insoluble salts, minerals, etc.	Minerals
B+G	total no calcined	Total salts	Salts and minerals

University of Cádiz (Spain)

RESULTS AND DISCUSSION

UNIVERSITY OF CÁDIZ (SPAIN

-MAIL: CRISTINA.MARZO@UCA.ES

RESULTS AND DISCUSSION. Influence on the solid particle size

AHP pre-treatment was applied on milled **rice husk** and four different ranges of size were assayed

- 0.5 1 mm
- I I.5 mm
- 1.5 2 mm

The average weight losses produced after AHP peroxide pre-treatment was 25.31 ± 0.38 %

Fibre composition of rice husk

University of Cádiz (Spain)

e-mail: cristina.marzo@uca.es

10

RESULTS AND DISCUSSION. Effect on different agro-industrial residues

Fibre composition before AHP unflowers stalks Vheat straw Exhausted sugar beet cossettes lice husks 70 60 10 0 Salts cellulosic cellulose cellulose Fats Light Minerals

University of Cádiz (Spain)

e-mail: cristina.marzo@uca.es

Fibre composition after AHP

RESULTS AND DISCUSSION. Effect on different agro-industrial residues

University of Cádiz (Spain)

e-mail: cristina.marzo@uca.es

12

CONCLUSIONS

UNIVERSITY OF CÁDIZ (SPAIN

CONCLUSIONS

Lignocellulosic biomass is a potential raw material for the production of added-value products through fermentation of monomeric sugars. Nevertheless, a previous pretreatment stage is needed to make the polymers more accessible to the enzymes in the hydrolysis step producing the fermentable sugars

- Efficient pretreatment to remove a significant amount of lignin
- Cellulose fraction was not affected achieving its concentration
- Higher concentrations of hydrolysable polymers were attained; higher hydrolysis yields.

EFFECT OF ALKALINE PEROXIDE PRETREATMENT ON FIBRE COMPOSITION OF VARIOUS LIGNOCELLULOSIC RESIDUES

Universidad de Cádiz

Cristina Marzo, J. Álvarez, A.B. Díaz, I. Caro, A. Blandino

University of Cádiz (Spain)