

Assessment of lignin compounds during composting of sewage sludge using Pyrolysis-GC/MS

L. El Fels, L. Lemée, M. Hafidi

laurent.lemee @univ-poitiers.fr http://ic2mp.labo.univ-poitiers.fr

Wastewater in Morocco

Untreated wastewater is one of the main sources of environmental pollution in Morocco

Moroccan Ministry of Agriculture, Rural Engineering Administration, 2002

National Sanitation Program

Aims at solving wastewater issue in Morocco with the

- Renovation and extension of the sewage network
- Separation of storm drain system
- Developpment of wastewater treatment plants

- Achieve an overall connection rate to the sewage network of 80% by 2020 and 100% by 2030
- Achieve 60% wastewater treatment by 2020 and 100% by 2030

Side effect of NSP

significant increase in sludge production

WWTP of Marrakech

Necessity to find a sustainable valorisation pathway

Composting and soil amendment

- Compensates loss of carbon due to crop
- Enhances soil structural stability
- Contributes to carbon "immobilisation"

However an immature compost can cause soil mineralisation, phytotoxicity, low nitrogen disponibility, ...

Objective of the study

Understand the process leading to an humified material

Correlate maturity factors (C/N or NH₄+/NO₃-)

with molecular changes

Marrakech wastewater treatment plant

Composting trials

- Conducted for 6 months
- Composting platform of Marrakech
 - Two different mixtures:

A: 1/3 Sludge + 2/3 palm waste

• 4 m³ compost windrow turned over weekly

- Temperature, pH, C, N monitoring
- Molecular characterisation

B: $\frac{1}{2}$ Sludge + $\frac{1}{2}$ palm waste

Temperature monitoring

A: 1/3 Sludge + 2/3 palm waste

B: $\frac{1}{2}$ Sludge + $\frac{1}{2}$ palm waste

Physico-chemical parameters

Mixtures	Composting time (months)	pН	C/N	NH ₄ ⁺ /NO ₃ ⁻
	0	6.34 ± 0.03	26.2	13.75
A	6	6.79 ±0.06	10.09	0.12
_	0	6.04 ± 0.28	27.4	15.6
В	6	7.03 ±0.08	10.08	0.14

Chemical fractionation

Analytical pyrolysis (Py-GC/MS)

Focus on aromatics of lignin origin, likely to participate to the structure of humified material

Decrease during the co-composting process

decrease due to metabolisation or transformation

Increase during the co-composting process

increase due to release with lignin degradation and incorporation in HS

Conclusion

- Co-composting of sludge with palm waste is a suitable valorisation pathway to obtain a fertilizing and stable organic matter, rich in humic substances
- Classical maturity parameters (C/N, NH_4^+/NO_3^-) correlate with molecular transformation (HS/lipids and increase in aromatics)
- Pyrolysis demonstrates different transformation pathways of lignin moieties degradation of lignin parallel to humic substances formation
- Molecular information of interest to understand the mechanisms of sequestration of carbon in soils

Thank you for your attention

