High-rate biodegradation of petroleum hydrocarbons in a H$_2$O$_2$-induced bioreactor using the peroxidase-mediated process

Gholamreza Moussavi1*, Sakineh Shokohian1, Kazem Naddafi2

1. Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

2. Department of Environmental Health Engineering, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

*Correspondence to: Gholamreza Moussavi

E-mail: moussavi@modares.ac.ir Tel: +98 21 82883827; Fax: +98 21 82883863

Abstract

A bacterial peroxidase-mediated oxidizing process was developed for biodegradation of total petroleum hydrocarbons (TPH) in the SBR. Complete biodegradation of high TPH concentration (7.5 g/L) attained in the bioreactor at a low amount (0.6 mM) of H$_2$O$_2$ and a reaction time of 22 h. The experimental specific TPH biodegradation rate level as high as $44.3 \text{ mg}_{TPH}/\text{g}_{biomass} \cdot \text{h}$ obtained in the process. The reaction time required for complete biodegradation of TPH concentrations of 2.5, 5, 7.5 and 10 g/L was 21, 22, 28 and 30 h, respectively. The catalytic activity of the hydrocarbon catalyzing peroxidases was determined to be 148.5 U/mg biomass. The biodegradation of TPH in seawater was similar to that in fresh media (no saline). The GC/MS analysis of the effluent indicated that all classes of hydrocarbons could be well-degraded in the H$_2$O$_2$-induced SBR. Accordingly, the peroxidase-mediated process is a promising method for efficiently biodegrading a concentrated TPH-laden saline wastewater.

Keywords: petroleum hydrocarbons, biodegradation, enzyme, peroxidase, salinity