13th IWA Specialized Conference on Small Water and Wastewater Systems, 5th IWA Specialized Conference on Resources-Oriented Sanitation, Athens, 14-16th September, 2016

Multi-purpose rainwater harvesting

Professor David Butler Director, Centre for Water Systems University of Exeter, UK

Summary

- RW costs and benefits
- Low energy systems
- Zero energy systems
- Dual purpose systems
- Potable supply systems
- Conclusions

RWH costs & benefits

Increasing whole life cost

Melville-Shreeve, P., Ward, S. and Butler, D. (2015). Rainwater Harvesting Typologies for UK Houses: A Comprehensive Comparison of System Configurations. *Water*, doi:10.3390/w70x000x

RWH costs & benefits

Costs

- Storage tank
- Pumping: energy/GHGs
- Treatment
- Installation (retrofitability)

Benefits

- Water resource: corporate
- Water saving: individual (potable/non-potable)
- Stormwater: flood control
- Stormwater: pollution control
- Resilience/emergency

RWH for UK houses

Costs

- Storage tank
- Pumping: energy/GHGs
- Treatment
- Installation (retrofitability)

Benefits

- Water resource: corporate
- Water saving: individual (potable/non-potable)
- Stormwater: flood control
- Stormwater: pollution control
- Resilience/emergency

RWH water saving efficiency

EXETER

An explosion of new system configurations

Storage tanks & configurations

Storage tanks & configurations

Low energy RWH

RSITY OF

Costs

- Storage tank
- Pumping: energy/GHGs
- Treatment
- Installation (retrofitability) ٠

Benefits

- Water resource: corporate
- Water saving: individual (potable/non-potable)
- Stormwater: flood control
- Stormwater: pollution control
- Resilience/emergency •

Low energy RWH

A) Chamber connected to downpipe

B) Illustration of chamber discharging to downpipe

C) Illustration of chamber being pumped empty

Low energy RWH – lab testing

Water supply power consumption

System	Consumption (kWh/m ³)	Ref
This study	0.12 - 0.18	
Commercial RWH	0.54	1
Market Leader RWH	0.68	1
Municipal supply	0.60	1
Median of 10 RWH studies	1.40	2
Global desalination	3.60	2

 Ward S., Butler D. & Memon F.A. (2012), Benchmarking energy consumption and CO2 emissions from rainwater-harvesting systems: an improved method by proxy. *Water and Environment Journal*, 26: 184 – 190. [2] Vieira et al.(2014). Energy intensity of rainwater harvesting systems. Renewable and Sustainable Energy Reviews 34, 225 –242.

Low energy RWH – lab testing

System components

Safe&SuRe Water management

15

Low energy RWH – field trials

10-20m³/annum

Safe&SuRe

Water management

Zero energy RWH – lab testing

Zero energy RWH – product

www.atlaswaterharvesting.co.uk

Dual purpose systems: water supply & stormwater

• Resilience/emergency

Dual system: passive control

Dual system: passive control

2.5m³ RWH tank supplying 30-60m³/annum. <u>PLUS</u> >2.5m³ of stormwater attenuation (source control)

www.rainwaterharvesting.co.uk

Dual systems: active control

EXETER OF

RWH: direct potable supply

EXETER B

RWH: direct potable

RWH: direct potable

		Inlet (no/ml)			Tank (no/ml)			Outlet (no/ml)		
	PCV	Range	Mean	SD	Range	Mean	SD	Range	Mean	SD
Coliforms	0	0-510	185	203	N/A	0	N/A	N/A	0	N/A
E. coli	0	0-210	57	75	N/A	0	N/A	N/A	0	N/A
Entero- cocci	0	0-900	229	309	N/A	0	N/A	N/A	0	N/A
TVC22	100	1- 25600	3581	6256	0-157	16	40	0-300	73	126
TVC37	10	0- 1350	381	377	0-56	8 Base	16 d on 26 wee	0-300 ekly samples	55 s taken duri	114 ng 2015

RWH Costs & benefits

Melville-Shreeve, P., Ward, S. and Butler, D. (2015). Rainwater Harvesting Typologies for UK Houses: A Comprehensive Comparison of System Configurations. *Water*, doi:10.3390/w70x000x

Conclusions

- RWH can come in many configurations
- Lower cost: smaller, retrofitable tanks (€1,500/house, ~3x cheaper than existing systems).
- Lower GHG emissions: high-level systems (comparable or lower than central delivery)
- Lower stormwater discharges: larger tanks, dual configuration (active improves over passive).

Conclusions

- All systems deliver water saving benefits AND stormwater benefits to varying degrees
- Where **demand is low**, tanks are likely to be emptied less frequently so **yield is higher**
- Where demand is high, tanks are likely to be emptied more frequently so yield is lower, but this provides greater stormwater control.
- Multi-purpose RWH systems tailored
 solutions for droughts & floods!
 EXETER
 Safe&SuRe Water management

13th IWA Specialized Conference on Small Water and Wastewater Systems, 5th IWA Specialized Conference on Resources-Oriented Sanitation, Athens, 14-16th September, 2016

Multi-purpose rainwater harvesting

Professor David Butler Director, Centre for Water Systems University of Exeter, UK d.butler@exeter.ac.uk

Thanks to Pete Melville-Shreeve and Dr Sarah Ward for their significant contributions to this presentation.