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Abstract 

Design engineers are often faced with the complex task of designing new collection systems. 

Methods based on Manning’s equation are frequently used due to the availability of tables and 

graphs, which simplify the calculations. These methods lack accuracy except when laborious 

numerical methods are utilized. The design of a collection system seeks the computation of a 

diameter which produces an accepted velocity value without considering the water level in the 

computed pipe.  Yet, the flow efficiency whether volumetric or circulation is an important 

design criteria. By considering the latter an increase in the volumetric capacity and circulation 

capacity of the flow in the pipe can be obtained.  In this research, a new concept for the design 

of partially full pipe is proposed.  It is based on Manning’s equation and produces more 

efficient flow in pipe, i.e., the pipe is as fully exploited as possible. 

Key words: pipes, steady uniform flow, pipe efficiency, Manning equation, pipe efficiency. 

 Introduction 

The best design of  sewer evacuation systems starts by studying the parameters which effect 

their operations, including technical, environmental and economical ones (McGhee 1991).  

The flow in the collection system is usually considered uniform and steady. This type of flow 

has been investigated extensively by several reaserchers, where a number of approaches have 

been proposed including graphical methodes (Camp,1946; Chow, 1959; Swarna et al., 1990), 

semi-graphical sollutions (Zeghadnia et al., 2009), and nomogramms (McGhee, 1991) or 

tables (Chow, 1959).  However, such approaches are usually considered limited and most of 

them are applicable only to limitted conditions.  Numerical solutions are usually prefered in 



practice, but these are difficult to apply and need to go through relatively lengthy trial and 

erros procedures.   

A number of researchers have attempted to propose explicit equations for the computation of 

normal depht (Barr et al., 1986; Saatçi, 1990; Prabhata et al., 2004; Achour, B., and Bedjaoui, 

A., 2006.). Other authors prefer to simulate pressurized flow as free surface flow using the 

Preissmann slot method, hence, they can model the transition from free surface flow to 

surcharged state and vice versa (Cunge et al.,1980; Garcia Navarro et al.,1994; Capart et al., 

1997; Ji, 1998; Trajkovic et al.,  1999; and Ferreri et al., 2010). 

The majority of research in this area is heavily focused on the determination of flow 

parameters, without looking at the performance of the flow inside the pipe.  The concept of 

efficient pipe has not previously been explicitly discussed.  The authors think that this is the 

first time this idea has been used in the direct calculation of pipes, which should draw the 

interest of researchers and designers alike. The efficiency of flow, therefore the efficiency of 

pipe is introduced as a measurable characteristic.  Accordingly, the pipe will flow with 

maximum use of water surface, i.e., fully exploiting its surface area, while respecting the 

technical requirements, especially in terms of velocity.  

In this paper we will shed some light on certain important technical considerations regarding 

the determination of hydraulic and geometrical parameters of partially filled pipes.  The 

analysis takes into account other parameters like the slope, diameter, velocity, and pipe flow 

efficiency, using explicit solutions. Also, the limitations of the proposed solutions will be 

discussed.  

Manning equation 

Circular pipes are widely used for sanitary sewage and storm water collection systems．The 

design of sewer networks is generally based on the Manning model (Manning, 1891), where 



Figure 01 : Water surface angle     

Water surface  

the flow section is mostly partially filled. The manning formula is commonly used in practice 

and is assumed to produce the best results when properly applied (Saatçi, 1990), (Lotfi, Z et 

al, 2014), (Zeghadnia,L et al, 2014). The usage of Manning model assumes the flow to be 

steady and uniform, where the slope, cross-sectional flow area, and velocity are not related to 

time, and are constant along the length of the pipe being analysed (Carlier, 1980). The 

Manning formula (Manning, 1891) used to model free surface flow can be written as follow: 

Q = 1
n

Rh
2 3⁄ 𝐴𝑆1 2⁄         (01) 

or 

V = 1
n

Rh
2 3⁄ 𝑆1 2⁄         (02) 

where:  

Q: Flow rate  (m3/sec), 

Rh: Hydraulic radius (m),  

n: Pipe roughness coefficient (Manning n) (sec/m1/3), 

A: Cross sectional flow area (m2), 

S: Slope of pipe bottom, dimensionless, 

V:  Flow velocity (m/sec), 

 

Eq. (1) and  Eq.(2) can be written as functions of water surface angle shown in figure 01 as 

follow: 
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𝑃

= 𝐷
4
�1 − sin (𝜃)

𝜃
�        (07) 

where:  

D : Pipe diameter (m) 

r : Pipe radius, 𝑟 = 𝐷
2
 (m) ,  

P : Wetted perimeter(m) 

𝜃 :  Water surface angle (Radian). 

Eq. (03) and (04) for known values of flow Q, roughness n, slope S, and diameter D, can be 

solved only after a series of long iterations (Giroud et al., 2000).  Eq.(04) can be substituted 

by Eq. (08) (Zeghadnia et al., 2009): 

V = aθ−2 5⁄                           (08) 

Where:  

a = 1
n
�D
4
�
2 3⁄

K2 3⁄ 𝑠1 2⁄           (08-a) 

K = �� nQ
𝑠1 2⁄ �

3
�2

13

D8
��
1 5⁄

          (08-b) 

 

Therefore: 

 𝑉 = ��𝑠
1 2⁄

𝑛
�
3
�2𝑄
𝐷
�
2
�
1 5⁄

𝜃−2 5⁄              (09) 

Eq. (05) and (07) take the new forms as follows: 



𝐴 = �𝐷
2
�
2 5⁄

� 𝑛𝑄
𝑠1 2⁄ �

3 5⁄
𝜃2 5⁄                            (10) 

𝑅ℎ = � 2 𝑛 𝑄
𝐷 𝑠1 2⁄ �

3 5⁄
𝜃−3 5⁄                            (11) 

Estimation of volumetric or circulation efficiency 

In order to simplify the computation, the calculation of pipe diameter is done frequently with 

the assumption that the pipe is flowing just full (under atmospheric pressure). Either flow or 

flow velocity can have maximum values, which correspond to certain water level in the pipe 

(Camp, 1944 and 1946).  Below or above this level, the flow or the velocity values decrease, 

which means that the pipe is not flowing with its maximum efficiency. For best hydraulic 

design of sanitary sewage and storm water collection systems, it is not enough to determine 

the diameter which produces an acceptable flow velocity; but it is also necessary to determine 

the best diameter which allows higher efficiency and ensure that the pipe is fully exploited. 

To estimate the volumetric efficiency in pipe, we propose the flowing formula: 

Qef = 100% ∗ �1 − Abs(Qmax−qr)
Qmax

�      (12) 

Where: 

Qef : Volumetric efficiency (%); 

Qmax: Maximum flow (m3/sec); 

qr: Flow in pipe (m3/sec), 

And, to compute the circulation efficiency in pipe, we propose the flowing formula: 

Vef = 100% ∗ �1 − Abs(Vmax−Vr)
Vmax

�      (13) 

Where; 

Vef : Circulation efficiency (%); 

Vmax: Maximum velocity (m2/sec); 

Vr: Velocity in pipe (m2/sec), 
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The volumetric and circulation efficiencies can be better explained using the graphical 

representation shown in the figure (02). 
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Figure02: Volumetric and circulation efficiency in circular pipe 

 

Figure 02 shows that the volumetric or circulation efficiency depends on the level of filling of 

the pipe, and they do not vary in the same manner. 

For  0° ≤ θ ≤ 40°, the volumetric efficiency is practically zero, while for  40° ≤ θ ≤ 180°, it 

is less than 50%. For θ = 185°, the efficiency equals 50%, and it reaches its maximum value, 



Qef ≅ 100%, at θ = 308°.  For 308° ≤ θ ≤ 360° the volumetric efficiency decreases to 

reach a value of 93.09%. 

On the other hand the variation of the circulation efficiency is more rapid than the volumetric 

efficiency.  For 0° ≤ θ ≤ 40°  the circulation efficiency can reache 20%, and for  40° ≤ θ ≤

180°  the efficiency reaches 85%.  The circulation efficiency reaches its maximum value, 

Vef ≅ 100%, at θ = 257°. For 257° ≤ θ ≤ 360° the circulation efficiency decreases to reach 

a value of 87.74%. Table 01 presents more details on the variation of both efficiencies as 

functions of θ. 

Table01: The Volumetric and the circulation efficiency as function of water surface angle. 

Water surface angle 

𝛉 

Volumetric efficiency 

Qef 

Circulation efficiency 

Vef 

0 0 0 

1 0 0.1201868 

2 0 0.3028452 

3 0 0.519973 

4 7.629395E-006 0.7630229 

5 1.525879E-005 1.027328 

   

10 0.0003890991 2.586734 

15 0.002235413 4.43598 

20 0.007720947 6.498361 

25 0.02018738 8.730227 

30 0.04416656 11.10167 

45 0.248764 18.84584 

60 0.8313828 27.21751 

90 4.296463 44.64105 

120 12.72436 61.42837 

150 27.19239 76.12539 



180 46.46733 87.68739 

210 67.11037 95.50261 

240 84.79923 99.41671 

251 89.81307 99.92023 

252 90.22173 99.94276 

253 90.62227 99.96152 

254 91.01462 99.97654 

255 91.39877 99.98783 

256 91.77465 99.99545 

257 92.14222 99.99939 

258 92.50146 99.99969 

259 92.85233 99.99638 

260 93.19479 99.9895 

293 99.79131 97.96639 

294 99.85471 97.85783 

295 99.91077 97.74696 

296 99.95956 97.63379 

297 99.99883 97.51839 

298 99.96432 97.40081 

299 99.93681 97.28107 

308 99.98842 96.11406 

347 95.35153 89.90553 

360 93.0919 87.74671 

Example 

In this example we calculate the volumetric and circulation efficiencies for pipes with velocity 

𝑉𝑟 = 0.88𝑚/𝑠𝑒𝑐, 𝑞𝑟 =0.15m3/s, in a 500 mm pipe diameter, Qmax= 0.256 m3/sec, Qfull= 

0.238m3/s, Vfull=1.212 m/sec, Vmax=1.30 m/sec. 



Using equations (12) and (13), we find that 𝑄𝑒𝑓 = 58.59% and 𝑉𝑒𝑓 = 67.68%.  Hence this 

pipe is not efficient enough both in terms of volume and circulation.  In this example, 

although the velocity is technically acceptable, this pipe is not flowing efficiently.  Hence we 

need to find a better solution to insure high efficiency of the pipe, which will be discussed in 

the following sections. 

Maximum volumetric efficiency  

The efficiency is discussed in the following paragraphs in terms of pipe volume occupancy.  

The higher the latter, the more efficient the pipe is. 

Maximum Flow condition  

When cross sectional flow area A increases, it reaches its maximum value “Amax” with 

maximum volumetric efficiency at 𝜃 = 308.3236, (Zeghadnia et al., 2009).  From Eq. (03): 

𝑄𝑚𝑎𝑥 = 0.3349288 𝐷8 3⁄ 𝑠1 2⁄

𝑛
        (14) 

For a pipe flowing full, the flow “Q” is expressed as follow: 

𝑄𝑝 = 0.3117909 𝐷8 3⁄ 𝑠1 2⁄

𝑛
       (15) 

When we combine Eq. (14) and (15) we obtain the following: 

𝑄𝑚𝑎𝑥 = 1.06779512𝑄𝑝        (16)    

Eq. (16) presents the relationship between the flow for filled pipe and the maximum flow 

which, for any section, is possible only if the following condition is achieved (Carlier, 1980): 

3PdA − AdP = 0        (17) 

Where (P is the wetted perimeter):  

P = θr ⇒  dP = rdθ         (18) 

A = r2

2
(θ − sinθ) ⇒ dA = r2

2
(1 − cosθ)dθ     (19) 



If we substitute the wetted perimeter “P”, cross sectional flow area “A” and their derivatives 

in Eq. (17), we obtain the following: 

3 𝑑𝐴
𝐴

= 𝑑𝑃
𝑃

 ⇒𝐴3 = 𝑃        (20) 

If we combine Eq. (07) and (20), then Eq. (1) becomes: 

𝑄 = 𝑆1 2⁄

𝑛
𝐴5 3⁄

𝑃2 3⁄ = 𝑆1 2⁄

𝑛
𝑝−1 9⁄        (21) 

From Eq. (21), the wetted perimeter can be rewritten as follow: 

𝑃 = �𝑆
1 2⁄

𝑛𝑄
�
9

         (22) 

By combining Eq. (06) and (22) we obtain the following: 

𝐷 = 2
𝜃𝑄𝑚𝑎𝑥

�𝑆
1 2⁄

𝑛𝑄
�
9

        (23) 

Eq. (23) can also be rewritten as follow: 

𝐷 = 0.372 �𝑆
1 2⁄

𝑛𝑄
�
9

        (24) 

The use of Eq. (24) to compute the diameter, for flow max, is simple and direct when the 

roughness n and the slope S are known. 

In the case where the slope S is unknown, Eq. (25) gives an explicit solution, if the flow Q, 

roughness n and diameter D are known. 

𝑆 = �𝑛 𝑄 � 𝐷
0.372

�
1 9⁄
�
2

       (25) 

Flow velocity limits 

By combining Eq.  (02),  Eq. (07) and Eq. (20) we obtain: 

  𝑉 = 𝑠1 2⁄

𝑛
𝑃−4 9⁄         (26) 

If we substitute the wetted perimeter expression given in Eq. (22), into Eq. (26), we obtain the 

following: 



𝑉 =  𝑠
1 2⁄

𝑛
��𝑠

1 2⁄

𝑛𝑄
�
9
�
−4 9⁄

= � 𝑛
𝑠1 2⁄ �

3
𝑄4                                    (27) 

The combination between Eq. (24) and (27) produces: 

𝑉 =  𝑠
1 2⁄

𝑛
�0.372

𝐷
�
4 9⁄

        (28) 

From Eq. (27), the cross sectional area A can be rewritten as follow: 

𝐴 = 𝑄
𝑉� = �𝑆

1 2⁄

𝑛
�
3
𝑄−3 = 𝑅𝑅3𝑄−3        (29) 

We call “ RR ” the resistance rate, which can be computed using equation (27) or (28) for 

maximum and minimum values of the flow velocity, respectively. Eq. (27) and Eq. (28) are 

applied only for the range of values given in table 02 and 03 in which the flow velocity varies 

between 0.5m/s ≤ V ≤ 5m/s  (Marc et al., 2006).  In practice, the pipe diameters ranges 

generally between:  10mm ≤ D ≤ 2100mm. 

Table 02. Flow velocity limits as a function of diameter and flow for the minimum value of   

RR  = 0.4, and 10mm ≤ D ≤ 250mm 

D (mm) Q (m3/s) V(Q) m/s V(D) m/s 

10 0,60 2,00 2,00 

12 0,59 1,84 1,84 

16 0,57 1,62 1,62 

20 0,55 1,47 1,47 

25 0,54 1,33 1,33 

32 0,53 1,19 1,19 

40 0,51 1,08 1,08 

50 0,50 0,98 0,98 

63 0,49 0,88 0,88 

75 0,48 0,81 0,82 

90 0,47 0,75 0,75 

100 0,46 0,72 0,72 



 

 

 

 

 

 

 

Table 03. Flow velocity limits as a function of diameter and flow for the maximum value of  

RR =1, and 10mm ≤ D ≤ 250mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110 0,46 0,69 0,69 

125 0,45 0,65 0,65 

140 0,45 0,62 0,62 

160 0,44 0,58 0,58 

200 0,43 0,53 0,53 

225 0,42 0,50 0,50 

250 0,42 0,50 0,50 

D (mm) Q (m3/s) V(Q) m/s V(D) m/s 

10 1,49 4,99 4,99 

12 1,46 4,60 4,60 

16 1,42 4,05 4,05 

20 1,38 3,67 3,67 

25 1,35 3,32 3,32 

32 1,31 2,97 2,98 

40 1,28 2,69 2,69 

50 1,25 2,44 2,44 

63 1,22 2,20 2,20 

75 1,19 2,04 2,04 

90 1,17 1,88 1,88 

100 1,16 1,79 1,79 

110 1,14 1,72 1,72 

125 1,13 1,62 1,62 

140 1,11 1,54 1,54 

160 1,10 1,45 1,45 

200 1,07 1,32 1,32 

225 1,06 1,25 1,25 

250 1,05 1,19 1,19 



Tables 02 and 03 presents the solutions for Eqs (27) and (28).  By comparing the flow 

velocities in Table 02 and 03 we can conclude that the resistance rate RR influences 

remarkably these values. For diameters that vary in range between 10𝑚𝑚 ≤ 𝐷 ≤ 250𝑚𝑚, 

the minimal value of RR should not be lower than 0.4.  This yields a variation in the flow in 

the range given by the following relationship: 

0.42𝑚
3
𝑠� ≤ 𝑄 ≤ 0.6𝑚

3
𝑠� .                         (29-a) 

 

The same diameter range accepts another boundary as maximum flow value for RR =1.  This 

generates the following flow values range: 

1.05𝑚
3
𝑠� ≤ 𝑄 ≤ 1.49𝑚

3
𝑠� .                                                      (29-b) 

If we expand the range of variation in diameter: 315𝑚𝑚 ≤ 𝐷 ≤ 2100𝑚𝑚, while we keep the 

condition of flow velocity as indicated above, we obtain the following results given in Tables 

04 and 05.  The latter present the variation of flow values as a function of the diameter and the 

limit values of RR.  We can summarize the variation of flow according to the variation of RR  

as follow: 

- For the minimum value of RR =1.05, the flow varies, according to table 04 results, as 

follow: 

0.87𝑚
3
𝑠� ≤ 𝑄 ≤ 1.07𝑚

3
𝑠�                 (29-c) 

- For the maximum value of RR =4.64, the flow varies, according to table 05 results, as 

follow: 

3.83𝑚
3
𝑠� ≤ 𝑄 ≤ 4.73𝑚

3
𝑠�     (29-d) 

Other results could easily be obtained using different values of RR within its accepted limits. 

 

 

 



Table 04. Flow velocity limits as function of diameter and flow for minimum  R𝑅(min) 
=1.05,    315𝑚𝑚 ≤ 𝐷 ≤ 2100𝑚𝑚. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 05. Flow velocity limits as function of diameter and flow for maximum  R𝑅(max) 
=4.64,  315𝑚𝑚 ≤ 𝐷 ≤ 2100𝑚𝑚 

D (mm) Q (m3/s) V(Q) m/s V(D) m/s 

315 1,07 1,13 1,13 

400 1,04 1,02 1,02 

500 1,02 0,92 0,92 

600 1,00 0,85 0,85 

700 0,98 0,79 0,79 

800 0,96 0,75 0,75 

900 0,95 0,71 0,71 

1000 0,94 0,68 0,68 

1100 0,93 0,65 0,65 

1200 0,92 0,62 0,62 

1300 0,91 0,60 0,60 

1400 0,91 0,58 0,58 

1500 0,90 0,56 0,57 

1600 0,89 0,55 0,55 

1700 0,89 0,53 0,53 

1800 0,88 0,52 0,52 

1900 0,88 0,51 0,51 

2000 0,87 0,50 0,50 

2100 0,87 0,50 0,50 

D (mm) Q (m3/s) V(Q) m/s V(D) m/s 

315 4,73 5,00 5,00 

400 4,60 4,49 4,49 

500 4,49 4,07 4,07 

600 4,40 3,75 3,75 

700 4,33 3,50 3,50 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum circulation efficiency 

In this section the efficiency of the pipe is treated based on the circulation of flow.  We look 

at the variation of the circulation efficiency from different levels.  Then we will present how 

to obtain the maximum exploitation of the pipe. 

Condition of maximum Flow velocity  

Flow under condition of maximum flow velocity is an important in sewage network drainage. 

In these types of flow condition it is imperative to check the following condition (Carlier, 

1980): 

PdA − AdP = 0                                                               (30) 

Where:  

                P : Wetted perimeter (m) 

800 4,26 3,30 3,30 

900 4,21 3,13 3,13 

1000 4,16 2,99 2,99 

1100 4,11 2,87 2,87 

1200 4,07 2,76 2,76 

1300 4,04 2,66 2,66 

1400 4,00 2,57 2,57 

1500 3,97 2,50 2,50 

1600 3,95 2,43 2,43 

1700 3,92 2,36 2,36 

1800 3,89 2,30 2,30 

1900 3,87 2,25 2,25 

2000 3,85 2,20 2,20 

2100 3,83 2,15 2,15 



             A : Cross sectional flow area (m2) 

The combination between the Eq. (18), Eq. (19) and Eq. (30) gives the following: 

 

−θcosθ + sinθ = 0                                                              (31) 
 

Eq. (31) can be solved iteratively. The use of the Bisection Method (Andre, 1995) gives the 

following results (where the absolute error equal to 10-6): θ = 257,584 

    
dA
A

= dP
P

                                                                          (32) 

From Eq. (06), Eq. (10) and (32) and after many simplifications we obtain the following 

formula: 

    𝐷 = 0.445 𝑛 𝑄
 𝑆1 2⁄                                                                (33) 

Therefore, Eq. (10) can be rewritten as follow: 

     𝐴 = 𝑛 𝑄
𝑆1 2⁄                                                                       (34) 

Eq. (33) for known flow Q, roughness n, and slope S, gives explicit solution for the diameter. 

The slope S can be also calculated directly by Eq. (35) if the flow Q, roughness n and 

diameter D are known parameters: 

    𝑆 = � 2 𝑛 𝑄
4.49 𝐷

�
2

                                                                  (35)        

 

According to Eq. (34), it is easy to deduce that the flow velocity is equal to the ratio of square 

root of the slope and roughness as follow: 

                      𝑉 = 𝑆1 2⁄

𝑛
= 0.445𝑄

𝐷
                                                                         (36) 

From Eq. (36), and at first glance we can conclude that the flow velocity depends only on the 

slope and roughness.  This is true in this case.  However, this conclusion must be related to 



another reality, that this formula is conditioned by the fullness degree in the pipe, which 

means the diameter used in Eq. (36) should be computed using Eq.(33) firstly. 

Recommended limits 

The proposed model of flow under condition of maximum velocity is governed by flow 

velocity limits, which produce a succession of limits of the other parameters: flow, slope and 

pipe roughness for the range of values presented in table 06 and 07: 

Table 06. Recommended limits of flow velocity as a function of diameter and flow for: 

R𝑅(min) = 0.5, and 10𝑚𝑚 ≤ 𝐷 ≤ 2100𝑚𝑚. 

Table 07. Recommended limits of flow velocity as a function of diameter and flow for: 

R𝑅(max) = 5 ; and 10𝑚𝑚 ≤ 𝐷 ≤ 2100𝑚𝑚. 

From the parameters values shown in tables 06 and 07, we can easily conclude that the 

resistance rate R𝑅 is an important parameter, where it can allow for the enlargement or the 

narrowing of the range of validity.  In the case of maximum velocity the equations of 

applicability can be presented as follow:  

1. For minimal value of R𝑅 = 0.5  and for diameters range of  10mm ≤ D ≤ 2100mm, 

the flow varies as follow : 

0.01𝑚
3
𝑠� ≤ 𝑄 ≤ 2.36𝑚

3
𝑠�     (36-a) 

2. If  R𝑅 = 5  and 10mm ≤ D ≥ 2100mm, the flow varies as follow: 

0.11𝑚
3
𝑠� ≤ 𝑄 ≤ 23.60𝑚

3
𝑠�     (36-b) 

From the above, and in a similar way to the case of flow under condition of maximum 

velocity  or maximum flow, it’s imperative to respect the variation of the resistance rate R𝑅 

which gives afterwards  acceptable values for flow velocity, and not necessary desired flow, 



because each range of R𝑅 generates different range of flow.  The range of flow values are 

given as follows: 

a) Case of flow max: 

𝑄𝐷=250𝑚𝑚 ≤ 𝑄𝐾𝑛𝑜𝑤𝑛 ≤ 𝑄𝐷=10𝑚𝑚    (36-c) 

Or : 

𝑄𝐷=2100𝑚𝑚 ≤ 𝑄𝑘𝑛𝑜𝑤𝑛 ≤ 𝑄𝐷=315𝑚𝑚    (36-d) 

b) Case of  velocity max: 

𝑄𝐷=10𝑚𝑚 ≤ 𝑄𝐾𝑛𝑜𝑤𝑛 ≤ 𝑄𝐷=2100𝑚𝑚    (36-e) 

Let us take practical field scenarios through the following two examples. 

Example 1 

A pipe with manning coefficient  𝑛 = 0.013, slope = 0.02%, transport a flow of 1.05 𝑚3 𝑠⁄  . 

Compute the pipe diameter for maximum volumetric efficiency 

Solution 

1. First we must check if the value of the resistance rate R𝑅 is respected so we can use 

the model : 

1.05 ≤ R𝑅 =
𝑆1 2⁄

𝑛
= 1.08 ≤ 4.64 

The resistance rate belongs to the allowable range.  From table 03 and 04 we can 

conclude that diameter varies as follows: 

315𝑚𝑚 ≤ 𝐷 ≤ 2100𝑚𝑚 

2. Checking the flow range: 



From Eq. (24) it is easy to compute QD=315mm and QD=2100mm 

𝑄𝐷=315𝑚𝑚 = �
0.372
𝐷 �

1
9�

 
𝑖1 2�

𝑛
= 1.10𝑚3 𝑠⁄  

𝑄𝐷=2100𝑚𝑚 = �
0.372
𝐷 �

1
9�

 
𝑖1 2�

𝑛
= 0.89𝑚3 𝑠⁄  

0.89𝑚
3
𝑠� ≤ 𝑄 = 1.05 ≤ 1.10𝑚

3
𝑠�  

Q belongs to the allowable range. 

3. From Eq. (24) the diameter is calculated as:  

𝐷 = 0.372�
𝑖1 2⁄

𝑛𝑄
�
9

≅ 500𝑚𝑚 

4. Checking of the flow velocity:  From equation (27) we obtain the following: 

𝑉 = 0.95 𝑚/𝑠 

The flow velocity value is acceptable; the same for the diameter, which will produce, with the 

other parameters, the maximum flow. (Which corresponded to fullness degree  θQmax).  

Example 2 

Let us to use the same data for the previous example to calculate the new diameter in case of 

maximum efficiency of flow circulation in pipe. 

Solution 

1. Checking for allowable RR range : 

0.5 ≤
𝑆1 2⁄

𝑛
= 1.08 ≤ 5 

Therefore, the diameter varies as follow: 



10𝑚𝑚 ≤ 𝐷 ≤ 2100𝑚𝑚 

2. Checking for the flow range : 

Eq. (33) allows the calculation of  QD=10mm and QD=2100mm 

𝑄𝐷=10𝑚𝑚 = �
𝐷

0.445�
 
𝑖1 2�

𝑛
= 0.02𝑚3 𝑠⁄  

𝑄𝐷=2100𝑚𝑚 = �
𝐷

0.445�
 
𝑖1 2�

𝑛
= 5.10𝑚3 𝑠⁄  

0.02𝑚
3
𝑠� ≤ 𝑄 = 1.05 ≤ 5.10𝑚

3
𝑠� . 

Hence, the flow is within the allowable range. 

 

3. Computation of the pipe diameter 

From Eq. (33) the pipe diameter equals to: 

𝐷 =
 0.445 𝑛 𝑄

 𝑖1 2⁄ ≅ 400𝑚𝑚 

From the above, the pipe diameter D is a known parameter, the flow velocity depends only on 

the slope S and roughness n, and from equation (36) we obtain the following: 

𝑉 =
𝑖1 2⁄

𝑛
= 1.08 𝑚/𝑠 

The flow velocity is within the acceptable range. 

Conclusion 

A new conception of the design of partially full flow in circular pipe is proposed using the 

new concept of volumetric and circulation efficiency. Two types of flow are considered: flow 

under condition of maximum flow, and flow under maximum velocity respectively.  These are 

important criteria for the waste water evacuation. For both cases, direct and easy solutions 



have been elaborated to calculate the pipe diameter, flow velocity and slope.  In the first  the 

diameter and slope can be calculate with Eq. (24) and Eq. (25).  For the second case Eq. (33) 

and (35) are recommended. For each case the computation of flow velocity is possible.  

The limitation of the solution range has been discussed too. The proposed equations are 

elaborated to obtain high efficiency of flow in circular pipes, while meeting the technical 

requirements.  
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Notation 

Q: Flow rate in m3/s, 

Rh: Hydraulic radius,  

n: Pipe roughness coefficient (Manning n), 

A: Cross sectional flow area, 

S: Slope of pipe bottom, dimensionless, 

V:  Flow velocity m/s, 

r : Pipe radius, let’s : r = D
2
 ,  

D : Pipe diameter, 

P : Wetted perimeter, 

θ :  Water surface angle, 

Qef : Volumetric efficiency; 

Qmax: Flow max; 



qr: Flow in pipe, 

Vef : Circulation efficiency; 

Vmax: Velocity max; 

Vr: Velocity in pipe, 

Amax: Cross sectional area correspond to Qmax, 

Qp : Flow in full section, 

 θQmax: Water surface angle correspond to Qmax 

RR: the resistance rate. 
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