

13th IWA

Specialized Conference on Small Water and Wastewater Systems

5th IWA

Specialized Conference on Resources-Oriented Sanitation

Athens
14-16 September 2016

Interlinkages between operational conditions and direct and indirect greenhouse gas emissions in a moving bed membrane biofilm reactor

G. Mannina, M. Capodici, A. Cosenza, D. Di Trapani

Università di Palermo Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM)

Introduction

Wastewater treatment entails:

- direct emissions of greenhouse gases (GHGs), such as nitrous oxide (N₂O)
- indirect emissions resulting from power requirements

N₂O Unwanted even at small levels due to the high global warming potential 310 higher than CO₂

Introduction

N₂O Production Pathways

Nitrification

- ✓ reduction of NO₂⁻ as terminal electron acceptor to N₂O (AOB denitrification)
- ✓ incomplete oxidation of hydroxylamine (NH₂OH) to NO₂

Denitrification

✓ intermediate of the incomplete heterotrophic denitrification

Introduction

Process operations aimed at the reduction of N₂O could conflict with the effluent quality and increase the operational costs

To identify GHG mitigation strategies as trade-off between operational costs and effluent quality index is a very ambitious challenge

Aim

Simple model for interlinkage among operational conditions/influent features/effluent quality and emitted N₂O.

Performing a multivariate analysis

University Cape Town (UCT) moving bed (MB) membrane bioreactor (MBR) pilot plant.

Methods

Pilot plant

$$Q_{IN} = 20 L h^{-1}$$

 $Q_{R1} = 20 L h^{-1}$
 $Q_{RAS} = 80 L h^{-1}$

$$Q_{R2} = 100 L h^{-1}$$

 $Q_{OUT} = 20 L h^{-1}$

Three experimental phases:

150 days of experimentation

Mixture of real and synthetic wastewater!

Phase I: SRT = ∞

MBR Tank

Phase II: SRT = 30 days

Phase III: SRT = 15 days

Pilot plant

PURON 3 bundle ultrafiltration module (pore size 0.03 µm, surface 1.4 m²)

AMITECH carriers in anoxic and aerobic reactors with a 15 and 40% filling fraction respectively

Measured data

TSS, VSS, COD_{TOT}, COD_{SOL}, N-NH₄,N-NO₃, N-NO₂, TN, TP, P-PO₄, DO, pH, T,

N-N₂O as gas and dissolved

Two time per week in each tank

Indirect emissions

The Operational Costs (OCs) were evaluated using conversion factors (Mannina and Cosenza, 2015):

$$OC = (Pw + Peff) \cdot \gamma_e + EF$$

Pw [kWh m⁻³] energy required for the aeration Peff [kWh m⁻³] energy required for permeate extraction $\gamma_{power,GHG}$ γ_{e} conversion factors, 0.7 gCO_{2eq} and 0.806 € kWh⁻¹ EF [€ m⁻³] cost of the effluent fine including N₂O

Indirect emissions

The **effluent fine (EF)** was evaluated using:

$$EF = \frac{1}{t_2 - t_1} \begin{bmatrix} t_2 & 1 & Q_{OUT} & Da_j & C_j^{EFF} + (Q_{OUT}) & Heaviside & C_j^{EFF} - C_{L,j} \end{bmatrix} \begin{bmatrix} Da_j & C_j^{EFF} + (Q_{OUT}) & Heaviside & C_j^{EFF} - C_{L,j} \end{bmatrix} \begin{bmatrix} Da_j & C_j^{EFF} - C_{L,j} \end{bmatrix} \begin{bmatrix} Da_j & Da_j & Da_j & Da_j & Da_j \end{bmatrix}$$

 Q_{IN} and Q_{OUT} are the influent and effluent flow, respectively;

 $\Delta\alpha_{j}$ is the slope of the curve EF versus C_{j}^{EFF} when C_{j}^{EFF} (in this case, the function Heaviside =0);

 $\Delta \beta_j$ represents the slope of the curve EF versus C_j^{EFF} when $C_j^{EFF} > C_{L,j}$ (in this case, the function Heaviside =1);

 $\beta_{0,i}$ are the increment of the fines for the latter case.

Indirect emissions

The **effluent quality index (EQI)** was evaluated using:

$$EQI = \frac{1}{T \square 1000} \square COD_{TOT} + b_{TN} \square TN + b_{PO} \square PO + \square Q_{OUT} \square dt$$

$$\downarrow t_0 \square b_{N2 \text{ Ogas}} \square N_2 O_{gas} + b_{N2 \text{ O}, L} \square N_2 O_L \square Q_{OUT} \square dt$$

 β_{COD} , β_{TN} , β_{PO} , β_{N2Ogas} and $\beta_{N2O,L}$ are the weighting factors of the effluent COD_{TOT} , TN, PO, liquid N_2O in the permeate and gaseous N_2O .

Multiregression analysis

Performed to point out general relationships for the N-N₂O and the plant operation conditions or the available measured data

Two type of analysis

Simple linear regression

Complex regressions

Simple linear regression

$$Y = c_1 \cdot X_1 + c_2$$

 N_2O-N flux_{ANAER} (N_2O-N flux emitted from the anaerobic tank)

N₂O-N flux_{ANOX} (N₂O-N flux emitted from the anoxic tank)

N₂O-N flux_{AFR} (N₂O-N flux emitted from the aerobic tank)

N₂O-N flux_{MBR} (N₂O-N flux emitted from the MBR tank)

N₂O-N dissolved_{OUT} (N₂O-N permeate dissolved concentration)

Dependent variables

Y = dependent variable; X_1 = independent variable; c_{1, c_2} regression coefficients

Complex regressions

$$Y = c_1 \cdot X_1 + \dots + c_n \cdot X_m$$

Multiple linear (LINm)

$$Y = c_1 \cdot X_1^{c2} \times \dots \times c_{n-1} \cdot X_m^{cn}$$

Multiple exponential (EXP)

$$Y = c_1 \cdot X_1^{c2} + \dots + c_{n-1} \cdot X_m^{cn}$$

Sum of exponential (SumEXP)

 ΣN_2 O-N flux (sum of the N_2 O-N flux emitted from each tank) N_2 O-N dissolved_{OUT} (N_2 O-N permeate dissolved concentration)

Dependent variables

Y = dependent variable; $X_1,...,X_m$ = independent variable; $c_1,...,c_n$ regression coefficients

Independent variables

Influent concentration

COD_{TOT, IN}, N-NH_{4,IN}, P_{TOT,IN}, P-PO_{4,IN}, C/N

Effluent concentration

COD_{TOT,OUT}, BOD_{5,OUT}, N-NH_{4,OUT}, N-NO_{3,OUT}, NO₂-N_{,OUT}, P-PO_{4,OUT}

Intermediate concentration

N-NO_{2_AER}, N-NO_{2_ANOX}, DO_{AER}, DO_{ANOX}, pH_{AER}, pH_{ANOX}, DO_{MBR}

Performance indicators

 $\eta_{\text{COD,BIO}}$, $\eta_{\text{COD,TOT}}$, η_{NITR} , η_{DENIT} , η_{NTOT} , η_{P}

Operational conditions

TSS*, SRT, Biofilm*

Numerical settings

10,000 Monte Carlo simulations varying coefficients

Evaluation of Nash and Sutcliffe efficiency for each simulation

$$Efficiency = 1 - \frac{\sum_{i=1}^{n} (Y_{meas,i} - Y_{sim,i})^2}{\sum_{i=1}^{n} (Y_{meas,i} - Y_{aver,meas,i})^2}$$

 $Y_{meas,i}$ = measured value of the ith dependent state variable; $Y_{sim,i}$ = simulated value of the ith dependent state variable; $Y_{aver,meas,i}$ = average of the measured values of the ith dependent state variable

Results

Simple linear regression analysis

Maximum efficiency

Varying the SRT different variables can be adopted to predict the N₂O

		Dependent variables						
NO ₂	accumula c	ation information in the second in the secon	N ₂ O-N flux _{MBR}	N ₂ O-N dissolved _{OUT}				
Pnase	,							
-	Independent variable	TSS	NO ₂ -N _{ANOX}	NO ₂ -N _{ANOX}	NH ₄ -N _{IN}	NO₃-N _{OUT}		
	Efficie N		ا ما ام میراد		2	0.1		
II	Indepen variat		end on C	he perm	eate	COD _{OUT}		
	Efficie,	ч	oria ori c	001	26	0.72		
Ш	Independent variable	pH _{AER}	Biofilm	Biofilm	PO ₄ -P _{OUT}	NO ₂ -N _{AER}		
	Efficiency	0.12	0.36	0.67	0.52	0.94		

Simple linear regression analysis

Parameter- c₂

Complex multiregression analysis

LINm - Maximum efficiency

	$\sum N_2O-N$ flux	N ₂ O-N dissolved _{out}
	Efficiency	Efficiency
Independent variable	0.015	0.244

C/N

N-NH_{4,IN}

TSS

Biofilm

SRT

DO

N-NO_{2 AER}

pHAER

DOANOX

N-NO_{2 ANOX}

pHANOX

LINm poorly reproduces the measured data for ΣN_2 O-N flux (efficiency 0.015). Efficiency obtained for the N_2 O-N dissolved_{OUT} is slightly higher than for ΣN_2 O-N flux (equal to 0.244)

Complex multiregression analysis

EXP and SumEXP - Maximum efficiency

		EXP	SumEXP		
	ΣN_2O-N flux	N ₂ O-N dissolved _{OUT}	ΣN_2O-N flux	N ₂ O-N dissolved _{OUT}	
	Efficiency	Efficiency	Efficiency	Efficiency	
Independent variable	0.125	0.164	0.198	0.178	
C/N					

Poor efficiency values obtained for both the investigated dependent variables

C/N

Conclusions

- ✓ Reasonable agreements for simple regression equations
- ✓ Dependency of N₂O flux with SRT and plant sections
- ✓ SRT of Phase III makes the conditions of N₂O production more sharped
- ✓ None of the investigated equations for complex multivariate analysis is able to provide satisfactory efficiencies

Message to take home!

The interactions among the key factors affecting the N₂O make difficult to establish an unique equation valid for different operational conditions for predicting N₂O

13th IWA
Specialized Conference on
Small Water and Wastewater
Systems

Athens
14-16 September 2016

5th IWA

Specialized Conference on Resources-Oriented Sanitation

Thank you for your attention

Giorgio Mannina giorgio.mannina@unipa.it

Acknowledgements

This research was funded by Italian Ministry of Education, University and Research (MIUR) through the Research project of national interest PRIN2012 (D.M. 28 dicembre 2012 n. 957/Ric – Prot. 2012PTZAMC) entitled "Energy consumption and GreenHouse Gas (GHG) emissions in the wastewater treatment plants: a decision support system for planning and management – http://ghgfromwwtp.unipa.it"

1st International Conference

www.ficwtmod2017.it

FICWTMOD2017 - Frontiers International Conference on wastewater treatment and modelling

Supported by

21 – 24 May 2017, Palermo, Italy

