

APPLICATION OF METAKAOLIN GEOPOLYMER FOR AMMONIUM REMOVAL IN SMALL-SCALE WASTEWATER TREATMENT SYSTEMS

Tero Luukkonen, Kateřina Věžníková, Emma-Tuulia Tolonen, <u>Hanna Runtti</u>, Juho Yliniemi, Tao Hu, Kimmo Kemppainen, Ulla Lassi

Faculty of Science/Research Unit of Sustainable Chemistry, University of Oulu, Finland

23-Sep-16

ŵ

2

AMMONIUM, NH₄⁺

- Nontoxic, necessary nutrient element for many kinds of living systems.
- Occurs in municipal wastewaters and industrial effluents.
- Major contributor to the eutrophication of water bodies.
- \rightarrow The removal of nitrogen from wastewaters has become mandatory in several countries.
- The requirement for total nitrogen removal within small-scale wastewater systems generally 30% and in the areas defined sensitive for contamination 40% (Finland).
- NH₄⁺ removal from municipal wastewaters is a challenge in small-scale wastewater treatment systems.

SMALL-SCALE TREATMENT SYSTEMS

- Some treatment steps in small-scale wastewater systems remove N:
- Septic tanks (3–20 % removal)
- Infiltration systems (10-40 %)
- Sand filters (10-80 %)
- Biological processes:
- Biofilms
- Membrane bioreactors
- Suspended growth active sludge process (large-scale wastewater treatment plants)

separation.

Nitrogen removal process:

- most likely a combination of microbial activity

(nitrification-denitrification) and physico-chemical

- Biological nitrogen removal has a major limitation.
- The temperature of **wastewater** < **+12°C**:
 - \rightarrow The kinetics of nitrification and denitrification significantly hinder.
 - \rightarrow Limits use only to a warm season in cool climate areas (e.g. in northern Scandinavia).
- Sorption-based approaches e.g. <u>reactive filter systems</u> \rightarrow offer a simple and more robust alternative method for NH₄⁺ removal.

Ŵ

SORPTION-BASED REACTIVE FILTERS SYSTEMS

Sorption-based approaches e.g. reactive filters systems:

- A simple and more robust alternative method for NH₄⁺ removal.
- Main advantages:

- low dependency on temperature
- possibility to recover nutrients.

- Pre-treatment is required before the actual reactive filter (to avoid clogging):
 - the sludge separation unit (e.g. a septic tank): the largest particles are separated (1)
 - the pre-treatment step (e.g. gravel bed): removes organic material and suspended solids (2).
- The reactive filter unit (3):
 - contains granular NH₄⁺ sorbent material such as natural zeolites (the most studied sorbents) e.g. clinoptilolite (the most used) or wollastonite.

23-Sep-16 Faculty of Science/Research Unit of Sustainable Chemistry University of Outu

Reactive filter uni

ŵ

THE AIM OF THIS STUDY

- Natural zeolites are the most studied sorbents and can be used in reactive filters.
- The aim of this study: to produce new alternative sorbent materials from low-cost raw materials for NH_4^+ removal.
- \rightarrow <u>Metakaolin geopolymer.</u>
- Geopolymerization-granulation process: the first time in the production of NH₄⁺ sorbent material.

GEOPOLYMERS

The most common geopolymer synthesis method:

- Reaction between aluminosilicate raw material (e.g. metakaolin) and alkaline activator (commonly concentrated sodium hydroxide and silicate) at ambient or near-ambient temperature and pressure.
- The formation reactions of geopolymers include:
 - dissolution, gelation, reorganization, and hardening
 - the exact mechanism still unclear.

6

Geopolymerization-granulation with high-shear granulator

- The particles begin to bind together by the surface tension of the liquid
- The alkali activator starts to dissolve the precursor particles which enhance the binding
- Formation of alumina-silicate gel similar to "regular" geopolymers

w

ZEOLITES AND GEOPOLYMERS

 Geopolymers and zeolites consist of an anionic framework of corner-sharing SiO₄ and AlO₄ where the exchangeable cations are located in the voids

• Main differences:

- Amorphous geopolymers vs. crystalline zeolites.
- The synthesis of geopolymers is simpler and lower-energy compared to synthetic zeolites.
- Geopolymer has higher ammonium removal capacity than typical natural zeolites.

- Finland)
 - \rightarrow Collected samples:
 - 1) after aerated sand removal and screening (screened effluent).
 - 2) after aerated sand removal, screening, coagulation with polyaluminium chloride, and sedimentation (pre-sedimented effluent).

·Backround ·Materials and methods ·Experiments ·Results ·Conclusions

GEOPOLYMERIZATION: GRANULATED GEOPOLYMER

- Mixing metakaolin powder in a high shear granulator.
- Dosing the alkaline activator drop-wise until an L/S ratio of 0.4 (the maximum before agglomeration of granules started to occur) was reached.
- Sieving (1-4 mm).
- Consolidating for three days.
- Washed with deionized water before use.

BATCH SORPTION EXPERIMENTS

Sorption experiments

Batch sorption experiments (powdered metakaolin geopolymer):

 \rightarrow effect of sorbent dose (0.5–25 g/L, 24 h contact time)

 \rightarrow effect of contact time (1–1440 min, dose 5 g/L)

Centrifuge - 5 min, 4000 rpm

Ŵ

Column properties

Height [cm]	9.9
Diameter (inner) [cm]	4.4
Surface area [cm ²]	15.2

Continuous experiments

Continuous experiments (granulated metakaolin geopolymer)

	Test 1	Test 2
Mass of sorbent [g]	50	50
Particle size of sorbent [mm]	1_4	1_4
Flow rate [L/h]	0.5	1
Empty bed contact time (EBCT) [min]	3	6

- 1. Metakaolin geopolymer granules were washed (deionized water).
- 2. Pre-sedimented effluent was pumped through the column.
- 3. Effect of two contact times (EBCT): 3 and 6 min.
- 4. The bed was flushed (8 L of deionized water).

Regeneration

- Was performed two times
- → The NH_4^+ removal performance was tested after each regeneration cycle.

¹² •Backround •Materials and methods •Experiments •Results •Conclusions

CHARACTERISTICS OF METAKAOLIN GEOPOLYMER

Characteristics of the metakaolin

• Amorphous material.

- Higher specific surface area and more porous than metakaolin.
- pH > 4.5, zeta potential negative.
- The core (diameter of approx. 2 mm, highlighted with white) denser than the porous surface layer (approx. 0.5 mm).
- No clear differences in the chemical composition across the granule \rightarrow geopolymerization has taken place uniformly.

The cross-section of a granule

Spectrum Label	P1	P2	P3	P4	Р5	P6	P7	P8	Р9	P10	P11
0	50.3	48.5	45.4	48.1	45.8	52.0	48.9	46.9	46.0	42.2	48.2
Na	2.0	6.7	6.3	6.7	7.5	3.8	3.1	5.4	7.1	6.0	7.0
Mg	0.2		0.33	0.7	0.3	1.6	0.2	0.6	0.4	0.25	0.4
Al	7.6	18.8	17.4	17.5	18.1	10.0	22.1	11.6	18.1	14.45	18.4
Si	8.4	23.4	25.4	22.3	24.0	18.6	24.2	14.5	23.7	28.64	23.9
S	-	-	-	0.2	-	1.2	-	-	-	-	-
К	0.5	0.8	1.6	1.9	1.7	1.7	0.7	1.1	2.5	6.39	1.0
Ca	29.7	-	0.3	0.3	0.2	5.3	-	-	-	-	-
Fe	1.2	1.7	3.2	2.2	2.4	4.6	0.7	20.0	2.2	2.1	1.2
Cu	-	-	-	-	-	1.4	-	-	-	-	-
					-			•	•	•	

Chemical composition

• Granules relatively high-strength (average 63.85 N)

• A large variation between individual granules (34-123 N, n = 11).

·Backround ·Materials and methods ·Experiments ·Results ·Conclusions

23-Sep-16 Faculty of Science/Research Unit of Sustainable Chemistry University of Outure

Effect of sorbent dose

- Up to 80% removal reached.
- Selective towards NH₄⁺.
- Wastewater physico-chemical characteristics only a minor effect on the NH₄⁺ removal efficiency.
- The increase of sorbent dose up to approx.4 g/L
- \rightarrow increases NH₄⁺ removal results significantly.
- With larger doses \rightarrow the removal levels-off at 85–90%.

Effect of contact time

 The sorption equilibrium reached after 30–90 min.

- Sorbent: Metakaolin geopolymer granules. Initial NH₄⁺ concentration C₀: ~ 32 mg/L (synthetic solution) ~ 39 mg/L (pre-sedimented wastewater) ~ 40 mg/L (screened wastewater)

·Backround ·Materials and methods ·Experiments ·Results ·Conclusions

23-Sep-16 Faculty of Science/Research Unit of Sustainable Chemistry University of Oulu

RESULTS: ISOTHERMS AND KINETICS

The best-fitting model: Sips

$$q_{e} = \frac{q_m (K_s C_e)^{\beta_s}}{1 + (K_s C_e)^{\beta_s}}$$

- Calculated and experimental values in agreement.
- The trend of q_m values:

- synthetic wastewater > screened effluent > pre-sediment effluent.

- The pre-sediment effluent
- A significant decrease of q_m Addition of flocculant

 - pH adjustment chemicals (e.g. Ca concentration, pre-sediment effluent: 45 mg/L, screened effluent: 27 mg/L).

Kinetics:

- The best fit model: Pseudo-second order model: $\frac{t}{q_t} = \frac{1}{k_s q_e^2} + \frac{1}{q_e} t$ •
- The trend of rate constants - synthetic wastewater > screened effluent > pre-sediment effluent.
- Calculated and experimental values in agreement. •

Parameter	Synthetic wastewater	Pre-sedimented effluent	Screened effluent
Sips isotherm			
q _m , experimental [mg/g]	32.00	16.59	26.40
q _m , calculated [mg/g]	31.79	17.75	28.77
b [L/mg]	0.10	0.14	0.17
n	4.17	1.97	2.64
R ²	0.96	0.97	0.91
RMSE	2.53	1.08	2.86
X ²	2.29	2.45	16.18
Pseudo-second order rate equation			
q _e , experimental [mg/g]	5.62	5.42	5.62
q _e , calculated [mg/g]	5.27	5.46	5.22
k _{p2} [g/(mg min)]	0.24	0.04	0.12
R ²	0.97	0.99	0.98
RMSE	0.28	0.16	0.26

Ŵ

RESULTS: CONTINUOUS COLUMN EXPERIMENTS

Target:

- To test the effect of empty bed contact time (EBCT).
- To compare the results to the standard nitrogen removal requirement in Finland for small-scale wastewater treatment systems (i.e. 30%).

Results:

- Possible to reach the requirement with relatively short contact times (EBCT)
 6 and 3 minutes.
- → The regeneration (0.1 M NaOH and 0.2 M NaCl) was succesful.

- Sorbent: Metakaolin geopolymer granules.
- Initial NH_4^+ concentration: C_0 : ~35.7 mg/L (the pre-sedimented effluent).

CONCLUSIONS

- Granulated NH₄⁺ sorbent from metakaolin
 → Produced by using geopolymerization-granulation method.
- Results:

Continuous filtration experiments (granulated metakaolin geopolymer):

- The nitrogen removal requirement (30-40%) for small-scale wastewater treatment systems (In Finland) possible to reach.
 Short contact time (3-6 min).
 - → Possible to regenerate the granules with dilute NaOH/NaCl solution.

Batch sorption studies (powdered metakaolin geopolymer):

- The maximum NH₄⁺ sorption capacities:
 → 31.79 mg/g with synthetic wastewater.
 → 28.77 mg/g with screened municipal wastewater.
- Summary:
- Produced sorbent (metakaolin geopolymer):
 - \rightarrow selective towards NH₄+.
 - → the suitability for reactive filters used in small-scale municipal wastewater systems is promising.
 - \rightarrow could be regenerated or used as a fertilizer after use.

23-Sep-16 Faculty of Science/Research Unit of Sustainable Chemistry University of Oulu

18

Hanna Runtti, Faculty of Science/Research Unit of Sustainable Chemistry

University of Oulu