Danish BAT for hospital wastewater treatment - Full scale treatment of hospital wastewater consisting of MBR, ozone and GAC

Ulf Nielsen, P. E. Jørgensen, M. M. Klausen, J. Søholm, J. Tuerk SWWS Athens, 15.09.2016

Background Hospitals are regulated like industries in DK

Wastewater permits are issued by the municipalities

 Guiding limit values for 40 hazardous pharmaceuticals (API's)

 According to Danish law hospitals have to comply with BAT on wastewater treatment

 But what is BAT for treatment of hospital wastewater?

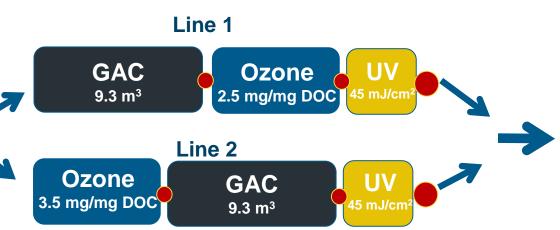
Full scale test plant at a large university hospital

Herlev University hospital

- 850 beds
- All major clinical specialities (cancer etc.)
- Water consumption: 170.000 m³/y

Full scale test treatment plant

- Constructed in 2013-14. Operated since May 2014
- Full solution with water, air and sludge treatment
- Private-Public innovation Partnership (PPP)



Setup of the treatment plant

Membrane BioReactor (MBR) plus two test lines for polishing:

Sample points:

MBR

Activated sludge

+ 0.2 µm filters

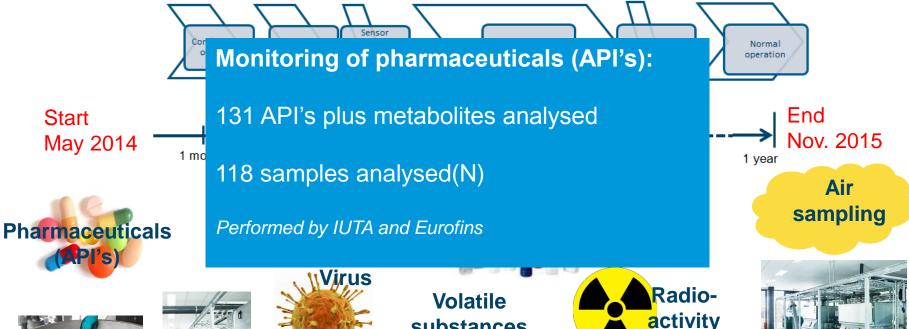
Overview of treatment plant

Process tanks

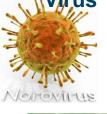
Polishing lines

- 1. GAC + Ozone + U\
- 2. Ozone + GAC + U\

Ceramic membrane filtration

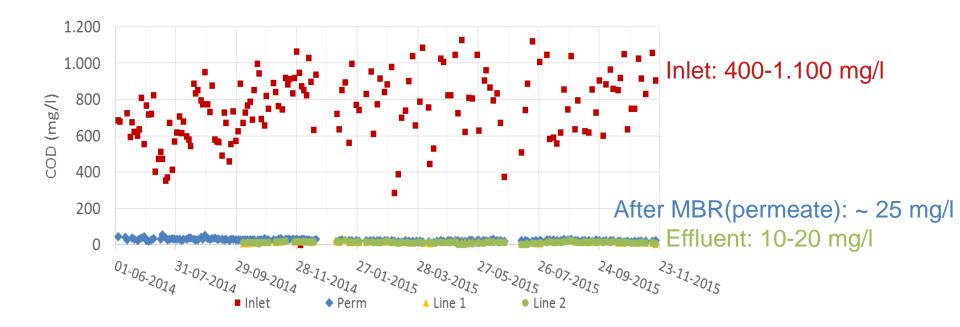

Sludge drying to 80% dry matter

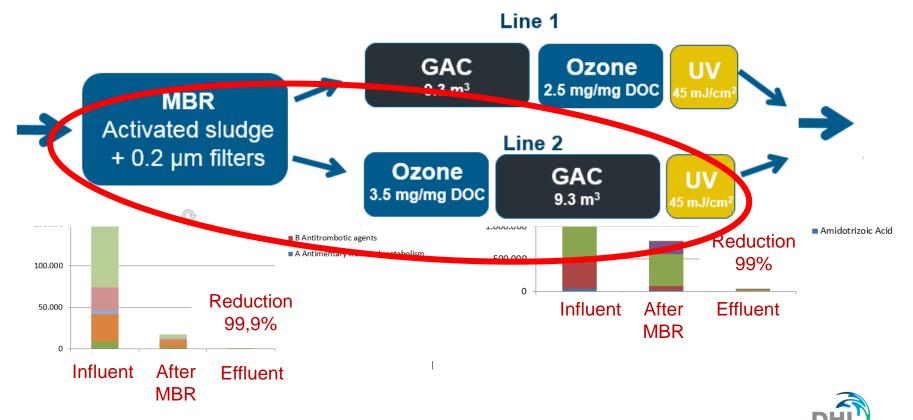
Sludge bags and screenings for incineration Pick-up 2/wk District heating produced Air treatment for odour/patogen removal using photoionization (UV+GAC)


Test period and plan

substances

Ecotoxicity

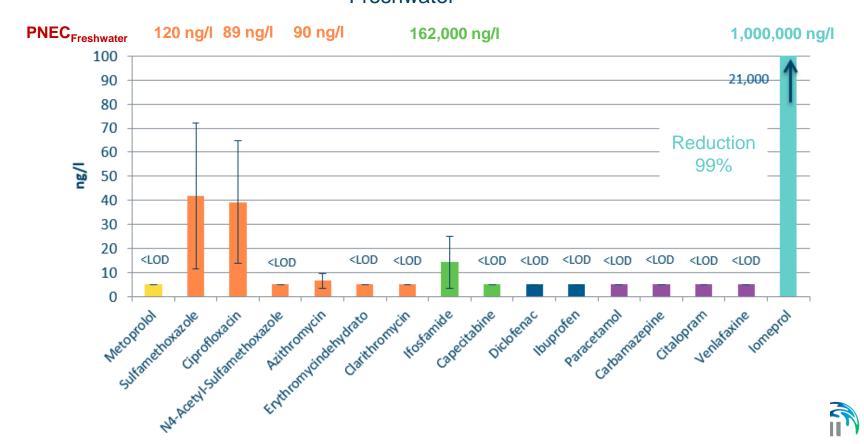




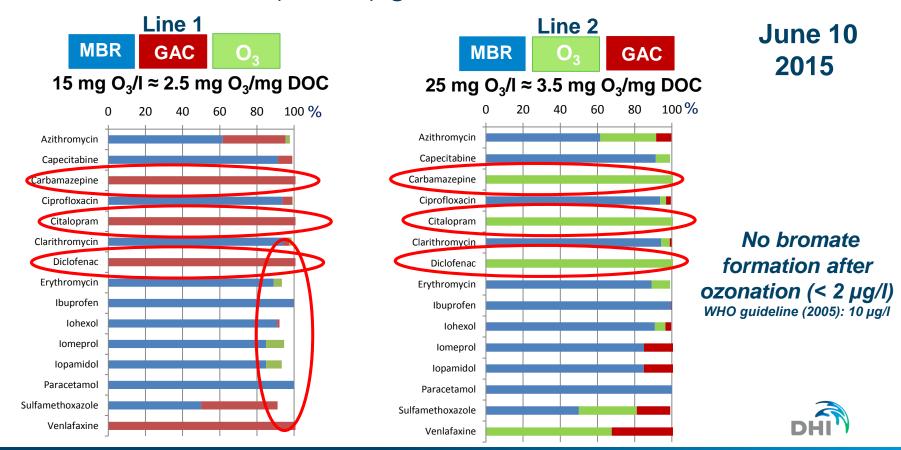
Results - COD Stable removal

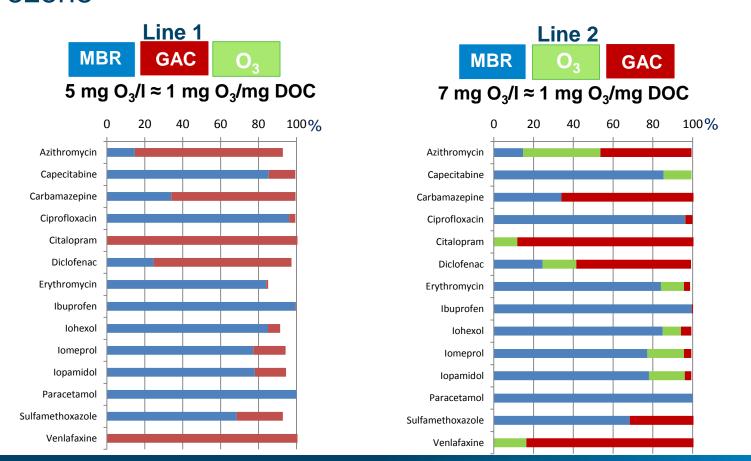


Efficient removal of pharmaceuticals (API's) Most efficient setup: MBR-Ozone-GAC (Line 2)


API's measured below PNEC_{Freshwater} or LOD in effluent

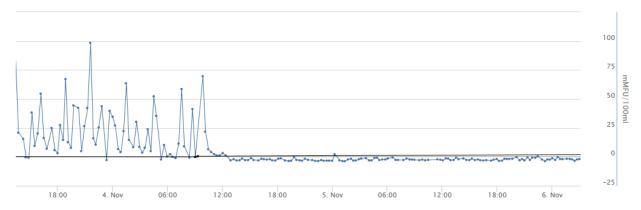
	Influent		After MBF	?		Effluent
	Atorvastatin	(0.6 - 6.5)	Azithromycin	(2.3 -8	3.1)	No pharmaceuticals
	Azithromycin	(2.8 - 21)	Carbamazepine	(0.7 -	1.3)	exceeding PNECFreshwater
	Capecitablile	(0.1 - 11)	Cefalexin	(LOD	- 3.2)	
	Carbamazepine (LOD - 2.0)		Ciprofloxacin (4.6 - 93)		No API's	
Ratio	Cefalexin	(LOD - 8.4)	Clarithromycin	(2.2 -	10)	measured above
MEC/PNEC _{Freshwater}	Ciprofloxacin	(20 - 303)	Diclofenac	(4.2 -	11)	
	Clarithromycin	(1.7 - 130)	Erythromycin	(0.3 -	1.1)	PNEC
in the brackets	Diclofenac	((3.0 - 11)	Iomeprol	(LOD	- 1.0)	
	Erythromycin (0.3 - 26)		N4-Acetyl-Sulfamethoxazole (0.4 - 1.9)			
	Ibuprofen	(1.5 - 13)	Ofloxacin	(LOD -	- 1.5)	
	lomeprol	(0.2 - 5)	Sulfamethoxazole (11 - 64)			
	Metonidazole	,	Tramadol	(1.2 - 2)	2.0)	
	N4-Acetyl-Sulfamethoxazole (15 - 108)		Venlafaxine	(5.2 -	7.7)	
	Ofloxacin	(LOD - 3.3)	Zopiclone	(0.6 - 4	4.7)	
	Paracetamol	(6.5 - 87)				
	Prednisolon	(LOD - 16)				
	Sulfamethoxazole (21 - 133)		44.450			
		(0.1 - 3.7)	14 API's measured above PNEC			
	Tramadol	(LOD - 4.2)				
		(2.5 - 11)				
	Zopiclone	(LOD - 5.3)				




Indicator substances measured in effluent Measured below PNEC_{Freshwater}

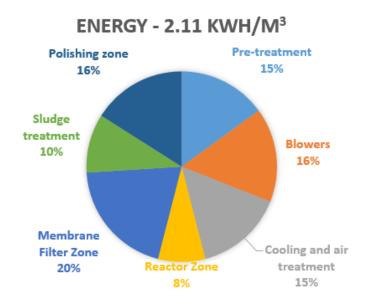
The polishing process that comes first removes most MBR-Ozone-GAC (Line 2) gives the best total removal

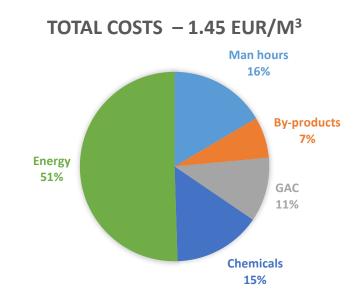
Lower ozone dosages gives significantly less removal by ozone



June 11 2015

MBR membrane leakage control system Online *E. Coli* monitoring in the permeate


- Ceramic 200 nm pore size membranes
- If no E. Coli in the permeate no leakage!
- Online monitoring of E. Coli specific enzyme activity (Betaglucoronidase) – controlled by growth tests (IDEXX)
- Monitored every 15-30 minutes (LOD: 20-100 MPN/100 ML)



Energy and economy

- Total operating and maintenance costs: 1.45 EURO/m³
- Total investment cost: 3.3-4.7m EURO (new plant)

Simpel pay back period, saving the sewer-tax:

4 m EURO/0.4 m EURO/y = 10 years

Conclusions (1)

- The plant is now considered as BAT for treatment of hospital wastewater in Denmark
- The MBR-Ozone-GAC sequence is the most efficient setup
- All monitored API's in the outlet are below PNEC or LOD
- An efficient membrane leakage control system developed
- Ozone-dosage around **3.5 mg/mg DOC gives the best removal**. No critical bromate formation is seen.
- 1/3 of the GAC filters have been changed per year in the two years operation period. Breakthrough of API's does not seem to be critical within this change interval

Conclusions(2) and next steps

Total operation and maintenance costs 1.45 EURO/m³

Next steps 2016-2017:

- The treated water will be discharged to the local stream
- 10.000 m³/year will be reused as cooling water at the hospital

Thanks for your attention!

Funding:

The Market Development Fund

Cooperation partners:

Contact:

Ulf Nielsen, DHI uln@dhigroup.com

Cell: +45 6162 7277

Conclusions on treatment efficiency

Parameters	Raw untreated wastewater	Treated wastewater	
Toxic and persistant antibiotics (ciprofloxacine, clarithromycin and sulfamethoxazole) and painkiller (diclofenac)	Factor 10-180 exceedings of effect limits (PNEC) for water living organisms	No exceedings of of effect limits (PNEC) for water living organisms	
Contrast media (e.g. iomeprol)	High concentration (2,5-7 mg/l)	99 % removal	
Antibiotic resitant bacterier	High occurence of multi resistant bacterier	No fecal or multi resistant bacteria	
Fish fry (zebra fish)	100 % mortality within 96 hours	0 % mortalitet within 96 timer	
Crustacean (daphnies)	No offsprings (all test animals died)	Offsprings survives as in clean water controls	
Estrogenic activity	Estrogen effects	No estrogen effects	

