

Screening of different types of on-site sewage facilities- treatment function and the potential of removing micropollutants

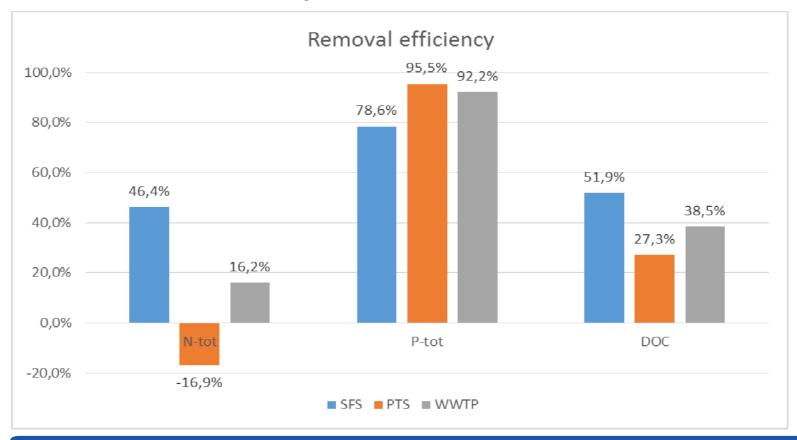
Wen Zhang, Gunno Renman

RedMic project

- ☐ The RedMic project is financed by FORMAS
- Aims at identifying critical organic micropollutants emitted from on-site sewage treatment facilities (OSSFs) and provides new science based reduction tools and reduction strategies.
- ☐ Cooperation between Umeå University, KTH Royal Institute of Technology, Stockholm University, Swedish University of Agricultural Science and Uppsala University
- ☐ KTH task in the project is to develop treatment units that are able to remove micopollutants

Introduction

- □ 10% of the population are not connected to municipal WWTP.
- ☐ The emission of organic micropollutants from OSSFs are largely unknown.
- □ OSSFs:
- soil filtration system (SFS),
- package treatment system (PTS)
- Source separation system (SSS)



Material and method

- □ Sampling: Water samples were collected from influent and effluent at 16 OSSFs (SFS, PTS, SSS) and 2 medium sized WWTP
- ☐ Control parameters analysis to assess the function of OSSFs: phosphorus, nitrogen, pH, DOC, EC, turbidity, oxygen concentration
- □ No target MP analysis was carried out by laboratories at Umeå University and the Swedish University of Agricultural Sciences. (pooled samples)

Results and disussion – SFS, PTS

☐ Removal of total nitrogen, total phosphorus and DOC

Results and discussion – SSS

Blackwater and greywater analysis

- High levels of pollutants in BW
- Greywater is suitable for direct discharge, however the treatment of greywater greatly improved the turbidity

Location	Ntot	Ptot	DOC	рН	EC	Oxygen	Temp	Turbidity
	mg/L	mg/L	mg/L		μS/cm	mg/L	°C	NTU
BW	900.91	185.14	275.93		4135	0.22	-	765
GW (inf.)	11.14	1.83	13.35	7.34	656	1.7	-	116
GW (eff.)	13.64	1.41	7.5	8.15	645	10.23	4.8	8

Micropollutant analysis

- No-target analysis Several thousands of compounds were detected, 45 and 79 of them were successfully identified by UU and SLU laboratories respectively.
- 30 compounds were selected as case chemicals for further study.

	SFS	PTS
Fragrances	68.60%	93.90%
UV stabilisers	55.90%	98.90%
Food additives	69.50%	59.90%
Detergents	46.50%	-6.80%
Plastic/rubber additives	70.70%	66.50%
Biocides	27.30%	14.60%
Pharmaceutical	52.90%	34.10%
Mean removal rate	52.40%	37.50%

^{*} MPs analysis were done by Kristin Blum (UU) and Meri Gros (SLU)

Conclusion

- Not all OSSFs in Sweden are in good condition.
- ☐ SFS provided acceptable treatment results for all control parameters and was also better at MP removal.
- □ PTS had a few extreme values
- MPs
- Nitrogen, DOC

E-mail: zhangw@kth.se