Methods for stabilising and concentrating human urine for use as a fertilizer

Marc A. Boncz

Edinéia L. Formagini, Felipe X.C. Arima, Paula L. Paulo

Introduction

- Agriculture in Brazil (and worldwide)
 - Still growing (population and biofuels!)
 - Growing dependency on mineral raw materials

- Wastewater Treatment
 - Brazil: mainly UASB reactors
 - world: often still insufficient nutrient removal

Intro: nutrients for agriculture

SanFRec

Intro: nutrients for agriculture

- Quantity available much smaller than demand
- Higher demand in more densely populated areas

Main problem: instability of urea

Urea hidrolysis:

 $H_2N-CO-NH_2 + H_2O \rightarrow 2 NH_3 + CO_2$

 $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

- Enzymatic process
 - Faster at pH≈7
- Problems:
 - Loss of Nitrogen
 - Smell
 - Increase of pH

Objectives

- stabilizing human urine for use as a fertilizer
 - Conservation of nutrients contained
 - impeding mainly urea hydrolysis
 - Volume reduction
 - Reduction of transportation costs

Materials and Methods

- Fresh urine collection + characterization
 - pH, TN, NH₃, P, K, TS, VS, FS
- Addition of stabilizing compounds
 - acids, NaOH, limestone, ashes or a mixture
- Determination of initial weight
- Storage in temperature controlled room or greenhouse – with and without forced ventilation (→ determination of evaporation)
- Parameters followed:
 - Weight, TN, NH₃, P, K, TS

Materials and Methods

Results: evaporation

- Slightly slower when compared to water
- Influenced mainly by the TS contents

Results: hydrolysis

pH development during the experiments

acids: 0.065 ... 0.27 M

Results: nutrient recovery

- Nutrient recovery:
 - Nitrogen compatible to the capacity of the maintenance of a high or low pH
 - K mostly 100%
 - Results for P are comparable to N

Conclusions

- It is possible to preserve the nutrients in the urine by using acids or bases.
- Better results obtained with acids (lower loss of nitrogen) and easier to implement (e.g. use of vinegar).
- For the case of bases, better results were obtained by using limestone.
 - + can be used to improve quality of soil
 - Significant increase of the weight of produced fertilizer

Thanks for the attention!

marc.boncz@ufms.br paula.paulo@ufms.br

Acknowledgments
CNPq – project number 475650/2009-3