

13th IWA

Specialized Conference on Small Water and Wastewater Systems

5th IWA Specialized Conference on Resources-Oriented Sanitation

Interlinkages between operational conditions and direct and indirect greenhouse gas emissions in a moving bed membrane biofilm reactor

G. Mannina, M. Capodici, A. Cosenza, D. Di Trapani

Università di Palermo Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM)

Wastewater treatment entails:

- direct emissions of greenhouse gases (GHGs), such as nitrous oxide (N_2O)
- indirect emissions resulting from power requirements

 N_2O Unwanted even at small levels due to the high global warming potential 310 higher than CO_2

Introduction

Introduction

Process operations aimed at the reduction of N₂O could conflict with the effluent quality and increase the operational costs

To identify GHG mitigation strategies as trade-off between operational costs and effluent quality index is a very ambitious challenge

Simple model for interlinkage among operational conditions/influent features/effluent quality and emitted N₂O.

Performing a multivariate analysis + University Cape Town (UCT) moving bed (MB) membrane bioreactor (MBR) pilot plant.

Methods

Pilot plant

Mixture of real and synthetic wastewater!

Phase I: SRT = ∞ Phase II: SRT = 30 days Phase III: SRT = 15 days

DICAN

Pilot plant

PURON 3 bundle ultrafiltration module (pore size $0.03 \ \mu m$, surface $1.4 \ m^2$)

AMITECH carriers in anoxic and aerobic reactors with a 15 and 40% filling fraction respectively

Measured data

TSS, VSS, COD_{TOT} , COD_{SOL} , N-NH₄,N-NO₃, N-NO₂, TN, TP, P-PO₄, DO, pH, T, **N-N₂O as gas and dissolved** <u>Two time per week in each tank</u>

Indirect emissions

The **Operational Costs (OCs)** were evaluated using conversion factors (Mannina and Cosenza, 2015):

$$OC = (Pw + Peff) \cdot \gamma_e + EF$$

Pw [kWh m⁻³] energy required for the aeration Peff [kWh m⁻³] energy required for permeate extraction $\gamma_{power,GHG} \gamma_e$ conversion factors, 0.7 gCO_{2eq} and 0.806 € kWh⁻¹ EF [€ m⁻³] cost of the effluent fine including N₂O

Indirect emissions

The **<u>effluent fine (EF)</u>** was evaluated using:

 Q_{IN} and Q_{OUT} are the influent and effluent flow, respectively; $\Delta \alpha_j$ is the slope of the curve EF versus C_j^{EFF} when $C_j^{EFF} < C_{L,j}$ (in this case, the function Heaviside =0);

 $\Delta\beta_j$ represents the slope of the curve EF versus C_j^{EFF} when $C_j^{EFF} > C_{L,j}$ (in this case, the function Heaviside =1);

 $\beta_{0,i}$ are the increment of the fines for the latter case.

Indirect emissions

The **<u>effluent quality index (EQI)</u>** was evaluated using:

 $\beta_{COD},~\beta_{TN},~\beta_{PO},~\beta_{N2Ogas}$ and $\beta_{N2O,L}$ are the weighting factors of the effluent COD_{TOT}, TN, PO, liquid N₂O in the permeate and gaseous N₂O.

Performed to point out general relationships for the N-N₂O and the plant operation conditions or the available measured data

Two type of analysis

Simple linear regression

Complex regressions

Simple linear regression

$$Y = c_1 \cdot X_1 + c_2$$

 N_2O-N flux_{ANAER} (N_2O-N flux emitted from the anaerobic tank) N_2O-N flux_{ANOX} (N_2O-N flux emitted from the anoxic tank) N_2O-N flux_{AER} (N_2O-N flux emitted from the aerobic tank) N_2O-N flux_{MBR} (N_2O-N flux emitted from the MBR tank) N_2O-N dissolved_{OUT} (N_2O-N permeate dissolved concentration)

Dependent variables

Y = dependent variable; X_1 = independent variable; $c_{1,} c_2$ regression coefficients

Complex regressions

$$Y = c_1 \cdot X_1 + \dots + c_n \cdot X_m$$

$$Y = c_1 \cdot X_1^{c2} \times \cdots \times c_{n-1} \cdot X_m^{cn}$$

Multiple exponential (EXP)

$$Y = c_1 \cdot X_1^{c2} + \dots + c_{n-1} \cdot X_m^{cn}$$
 Sum of exponential (SumEXP)

 $\sum N_2$ O-N flux (sum of the N₂O-N flux emitted from each tank) N₂O-N dissolved_{OUT} (N₂O-N permeate dissolved concentration)

Dependent variables

Y = dependent variable; $X_1, ..., X_m$ = independent variable; $c_1, ..., c_n$ regression coefficients

Independent variables

COD_{TOT, IN}, N-NH_{4,IN}, P_{TOT,IN}, P-PO_{4,IN}, C/N

Effluent concentration

Influent concentration

 $\mathsf{COD}_{\mathsf{TOT},\mathsf{OUT}}, \ \mathsf{BOD}_{\mathsf{5},\mathsf{OUT}}, \ \mathsf{N}\mathsf{-}\mathsf{NH}_{\mathsf{4},\mathsf{OUT}}, \ \mathsf{N}\mathsf{-}\mathsf{NO}_{\mathsf{3},\mathsf{OUT}}, \ \mathsf{NO}_{\mathsf{2}}\mathsf{-}\mathsf{N}_{,\mathsf{OUT}}, \ \mathsf{P}\mathsf{-}\mathsf{PO}_{\mathsf{4},\mathsf{OUT}}$

Intermediate concentration N-NO_{2_AER}, N-NO_{2_ANOX}, DO_{AER} , DO_{ANOX} , pH_{AER} , pH_{ANOX} , DO_{MBR}

Performance indicators

 $\eta_{\text{COD,BIO},}\,\eta_{\text{COD,TOT},}\,\eta_{\text{NITR}},\,\eta_{\text{DENIT}},\,\eta N_{\text{TOT},}\,\eta P$

Operational conditions

TSS*, SRT, Biofilm*

Numerical settings

10,000 Monte Carlo simulations varying coefficients

Evaluation of Nash and Sutcliffe efficiency for each simulation

$$Efficiency = 1 - \frac{\sum_{i=1}^{n} (Y_{meas,i} - Y_{sim,i})^2}{\sum_{i=1}^{n} (Y_{meas,i} - Y_{aver,meas,i})^2}$$

 $Y_{meas,i}$ = measured value of the ith dependent state variable; $Y_{sim,i}$ = simulated value of the ith dependent state variable; $Y_{aver,meas,i}$ = average of the measured values of the ith dependent state variable

Results

Simple linear regression analysis

Maximum efficiency

Varying the SRT different variables can be adopted to predict the N_2O

			variables			
NO ₂ accumulation influence the N ₂ O production					N ₂ O-N flux _{MBR}	N ₂ O-N dissolved _{OUT}
Pnase			•••			
	Independent variable	TSS	NO ₂ -N _{ANOX}	NO ₂ -N _{ANOX}	NH ₄ -N _{IN}	NO ₃ -N _{OUT}
	Efficie Indepen N ₂	O dieco	lund in t	ho norm	ooto ²	0.1
	Indepen 12 variat		end on (TR	COD _{OUT}
	Efficie	uch			26	0.72
	Independent variable	pH _{AER}	Biofilm	Biofilm	PO ₄ -P _{OUT}	NO ₂ -N _{AER}
	Efficiency	0.12	0.36	0.67	0.52	0.94

Complex multiregression analysis

INm - Maximum efficiency

	∑N₂O-N flux	N ₂ O-N dissolved _{OUT}
	Efficiency	Efficiency
dependent variable	0.015	0.244
C/N		
N-NH _{4.IN}		
TSS		where the measured
Biofilm		produces the measured
SRT		N flux (efficiency 0.015).
DO _{AER}		ained for the N ₂ O-N
I-NO _{2_AER}		slightly higher than for
pH _{AER}	$\sum N_2 O-N$ flux (ed	qual to 0.244)

Complex multiregression analysis

and SumEXP - Maximum efficiency

		EXP	SumEXP				
	∑N₂O-N flux	N ₂ O-N dissolved _{OUT}	ΣN₂O-N flux	N ₂ O-N dissolved _{OUT}			
	Efficiency	Efficiency	Efficiency	Efficiency			
Independent variable	0.125	0.164	0.198	0.178			
C/N							
C/N	Poor efficiency values obtained for both the investigated						
N-NH _{4,IN}							
N-NH _{4,IN}							
TSS							
TSS							
Biofilm							
Biofilm							
SRT							
SRT							
DO _{AER}	dependent variables						
DO _{AER}							
N-NO _{2 AER}							
N-NO _{2 AER}							
pH _{AER}							
pH _{AER}							

Conclusions

- asonable agreements for simple regression equations
- pendency of N₂O flux with SRT and plant sections
- T of Phase III makes the conditions of N₂O production re sharped
- ne of the investigated equations for complex multivariate alysis is able to provide satisfactory efficiencies

Message to take home!

e interactions among the key factors affecting the make difficult to establish an unique equation valid different operational conditions for predicting N₂O

13th IWA Specialized Conference on Small Water and Wastewater Systems

5th IWA Specialized Conference on Resources-Oriented Sanitation Athens 14-16 September 2016

Thank you for your attention

<u>Giorgio Mannina</u> giorgio.mannina@unipa.it

st International Conference www.ficwtmod2017.it FICWTMOD2017 - Frontiers International Conference on wastewater treatment and nodelling 21 – 24 May 2017, Palermo, Italy

ed by

