

Incorporating Ferrate Oxidation into Small Drinking Water Systems

David A. Reckhow, Yanjun Jiang, Joseph E. Goodwill, Joshua C. Cunningham, Xuyen Mai & John E. Tobiason

University of Massachusetts Amherst, MA

Ferrate Basics

Decomposes in water

$$FeO_4^{-2} + \frac{5}{2}H_2O \rightarrow Fe(OH)_3 + \frac{3}{4}O_2 + 2OH^-$$

- Forming ferric hydroxide and oxygen
- Must be produced on-site by either
 - Electrochemical method
 - Wet oxidation method

$$Fe(OH)_3 + \frac{3}{2}OCl^- + 2OH^- \rightarrow FeO_4^{-2} + \frac{3}{2}Cl^- + \frac{5}{2}H_2O$$

- Becoming more economical
- An oxidant and disinfectant
 - Many studies showing reaction rates for a wide range of organic and inorganic solutes in water
 - e.g., Sharma et al.; Lee & von Gunten
- Won't produce regulated DBPs
 - A good alternative for pre-Cl₂ and maybe pre-O₃

To be used in US Water Treatment

Ferrate must:

- Be given disinfection (CT) credit by the EPA
- Be cost competitive
- Not interfere with other treatments used in plant
- Offer some advantage over existing treatment technologies; examples:
 - Better removal of trace contaminants in raw water
 - Better control of organic and inorganic disinfection byproducts
 - Less energy consumption, carbon footprint, etc.
 - Easier to use, or more reliable
 - Improve aesthetic qualities of the product water

Summary of 2-log Disinfection @pH7

E. Coli (5°C)

 $MS2 (5^{\circ}C)$

Giardia (25°C)

V. cholerae (rugose) (20-25°C)

M-Fe(VI)*min
[(mg-Fe(VI)/L)*min]

3×10⁻⁵ [1.9] ^{†*}

4.7×10⁻⁵ [2.6][‡]

3.8×10⁻⁴ [21]⁺

6.3×10⁻⁵ [3.5][†]

M-Cl₂*min [(mg-Cl₂/L)*min]

7.1×10⁻⁷ [0.05]

2.5×10⁻⁶ [0.18]

3.8×10⁻⁴ [27]

3.5×10⁻⁶ [0.25]

[†]Current EPA study; * S35150 strain [‡]Hu et al. *ES&T*, 2012

Ferrate exposure (CT product)

CT values at pH 6.2 are much lower than those at pH 7.5, pH had a great effect on CT values.

But Questions Remain

 $FeO_4^{-2} + \frac{5}{2}H_2O \rightarrow Fe(OH)_3 + \frac{3}{4}O_2 + 2OH^-$

- Fe(+VI) goes to Fe(+III)
- Intermediate products and oxidation states?
 - Fe(V), Fe(IV)?
 - Are they reactive too?

"I think you should be more explicit here in step two"

Decomposition in phosphate buffer

- Mechanism contributed by many groups
 - Especially those led by Bielski and von Gunten

With phosphate and bromide

Without phosphate

Typical water with NOM

All reactions

How does Ferrate affect NOM reactivity with chlorine? DBP formation?

- Test Protocol
 - Treat raw water samples with ferrate
 - Allow ferrate to dissipate (<60 min)
 - Chlorinate in the lab
 - pH 7
 - Dose required for 1 mg/L residual after 72 hrs
 - 20°C
 - Measure DBPs
 - Neutral Extractables (including THMs)
 - Haloacetic Acids (9 total)

Effects of Direct Ferrate Oxidation on Trihalomethane (THM) Formation Potential

Comparison with ozone

Data from: Reckhow et al., 1986

Data from: current study

Integration into water treatment I

- Three pre-ferrate scenarios
 - I: direct ferrate oxidation (e.g., groundwater)
 - III: part of conventional (e.g. surface water)
 - IIIA: ferrate & optimal coagulation
 - IIIB: ferrate & sub-optimal coagulation

Integration into water treatment II

Three pre-ferrate scenarios

disinfection

mix

- I: direct ferrate oxidation (e.g., groundwater)
- III: part of conventional (e.g. surface water)
 - IIIA: ferrate & optimal coagulation
 - IIIB: ferrate & sub-optimal coagulation
- Reduce coagulant dose to account for prior addition of iron

 | Corrosion Control Fluoride | Disinfectant | Clear | Sys. |
 | Traw water | Pre-oxidation | rapid flocculation | Settling | Filtration |

The Intermediate Ferrate Scenario

- Point of Addition
 - After clarification (settling)

Intermediate Fe(VI) and THMs

Some Conclusions I

- Ferrate decomposition is more complicated than previously recognized. Natural waters have a stabilizing effect on ferrate.
 - Some bromide oxidation occurs
 - Phosphate suppresses decomposition and oxidation of Br
- Ferrate is capable of oxidizing regulated DBP precursors with an effectiveness similar to ozone.
 - At mass doses 1-2x those for ozone
 - Bromine incorporation is less with ferrate
 - Little bromate formation.
 - Exact nature of "effective" Fe oxidant is uncertain

Some Conclusions II

- When introduced at an intermediate stage, ferrate seems to be much more effective at destroying DBP precursors than when applied as a pre-oxidant
- Early data show ferrate to be effective at inactivating many bacteria, viruses and protozoans
- Ferrate in a pre-oxidant mode does not adversely affect filtration performance (filtered water turbidities, headloss buildup and filter run length)
- Ferrate seem to be an especially interested alternative for small systems that have water quality challenges

Acknowledgments

- WINSSS Center
- US EPA Star program
- UMass water research group
 - Especially: Yun Yu, Sherrie Webb-Yagodzinski, Arianne Bazilio
- Personnel from participating Utilities
 - Amherst, Stockbridge, Palmer, Readsboro, etc.
- Carole Tomlinson (Haskell Indian Nations Univ.)

Dave Reckhow

The UMass Ferrate Group

John Tobiason

Joe Goodwill

Josh Cunningham

Xuyen Mai

WINSS

Water Innovation Network for Sustainable Small Systems

A National Center for Innovative Small Drinking Water Systems

Universities of Massachusetts (Amherst), Texas (Austin), Nebraska, Florida, Illinois, South Florida, and Carollo Engineers

Kinetics of Ferrate with contaminants

- Prodigious literature
 - Sharma &others

Coordination Chemistry Reviews 257 (2013) 495-510

Contents lists available at SciVerse ScienceDirect

Coordination Chemistry Reviews

journal homepage: www.elsevier.com/locate/ccr

Review

Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism

Virender K. Sharma*

Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA

Contents

1	Introduction	495
2.	Synthesis and characterization	
3.	Reactivity	497
٥.	3.1. Organosulfur compounds	408
	3.2. Amines	
	3.3. Phenols	
	3.4. Carboxylic acids	
	· · · · · · · · · · · · · · · · · · ·	
	3.6. Carbohydrates and sucralose	
	3.7. Ascorbate	
	3.8. Hydrocarbons	
	3.9. Pharmaceuticals	
	3.10. DNA and its constituents.	
	3.11. Biological species	
4.	Conclusions	508
	Acknowledgments	508
	Appendix A. Supplementary data	508
	References	508

Kinetic Analysis, high dose

• 50 μM dose, Houston Water

