

13th IWA Specialized Conference on Small Water and Wastewater Systems

5th IWA Specialized Conference on Resources-Oriented Sanitation

Greywater characteristics and loadings – treatment to promote reuse

<u>C. Noutsopoulos</u>, A. Andreadakis, N. Kouris, D. Charchousi, P. Mendrinou, A. Galani, I. Mantziaras

> Athens, Greece September 15, 2016

National Technical University of Athens, Department of Water Resources and Environmental Engineering, Sanitary Engineering Laboratory

European Union European Social Fund

IINISTRY OF EDUCATION & RELIGIOUS AFFAIRS 1 A N A G I N G A U T H O R I T Y

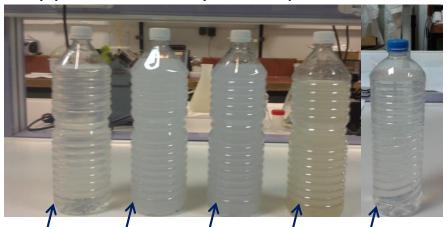
Co-financed by Greece and the European Union

Acknowledgment

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF). Research Funding Program: THALES. Investing in knowledge society through the European Social Fund – Hydropolis: Urban development and water infrastructure – Towards innovative decentralized urban water management.

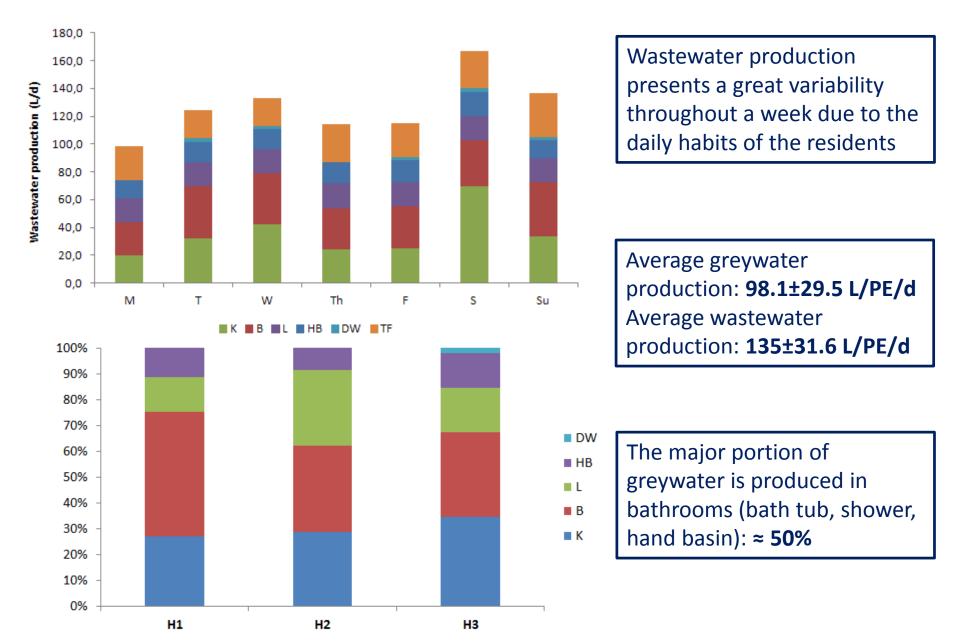
MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS M A N A G I N G A U T H O R I T Y

Co-financed by Greece and the European Union

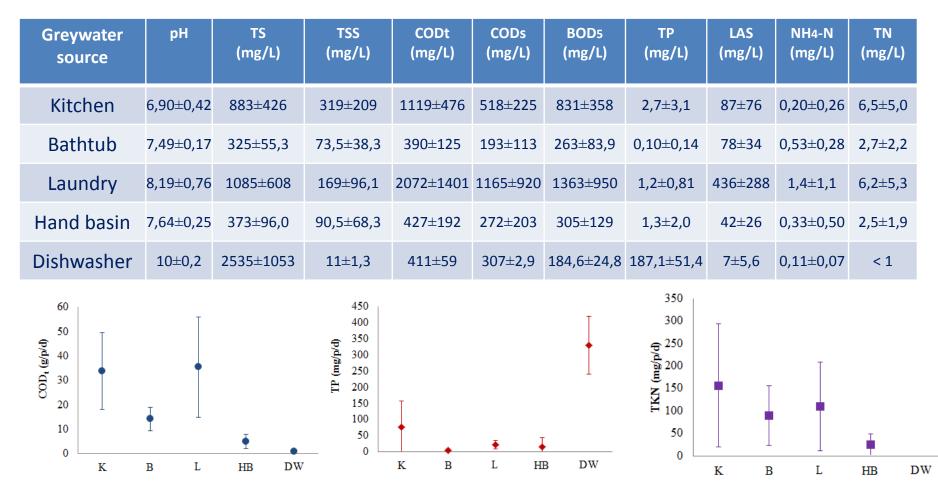


Scope of research

- Characterization of the different greywater sources in Greek households
- Evaluation of the effectiveness of several physicochemical greywater treatment systems

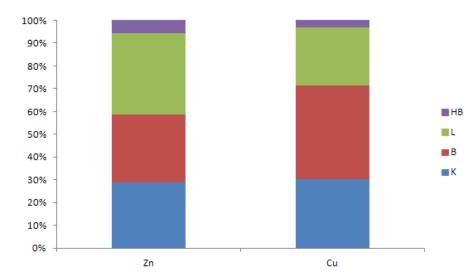

Greywater characterization

- Three residencies in area of Athens (H1, H2, H3) were monitored for two weeks
 - the average daily water consumption was recorded as the sum of greywater produced in all sources
- Several samples were collected from different greywater sources and being analyzed (60 samples)
- PH, conductivity, total solids (TS), total and volatile suspended solids (TSS, VSS), total and soluble COD, BOD₅, TP, TN, linear alkylbenzene sulfonates (LAS), heavy metals (Pb, Ni, Cu, Zn, Cr, Cd), emerging contaminants (nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate, bisphenol-A, triclosan).

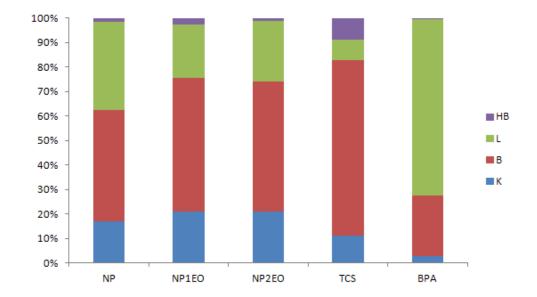

bath hand basin laundry kitchen dish washer

Quantitative greywater characterization

Qualitative greywater characterization


Main quality characteristics of greywater sources

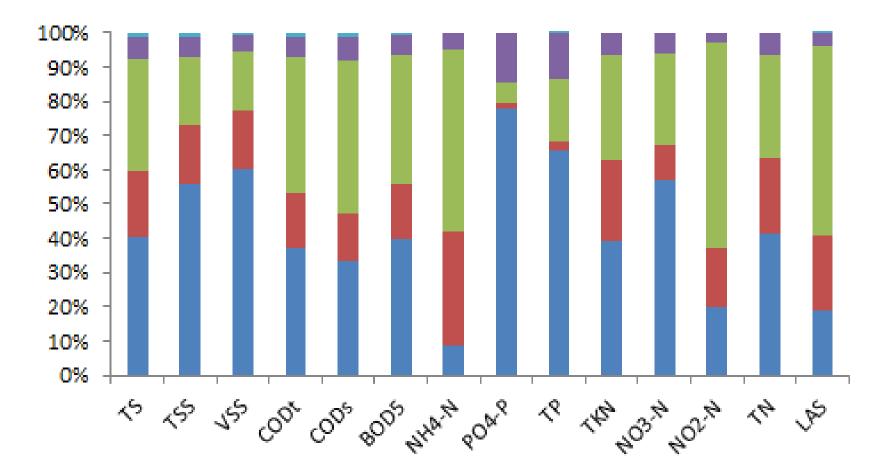
Contribution of different sources to the total greywater mass


Qualitative greywater characterization heavy metals

Greywater source	Cd (µg/L)	Pb (µg/L)	Cr (µg/L)	Ni (µg/L)	Zn (mg/L)	Cu (µg/L)
Bath/shower	<0,15	<2,5	<2,5	<5,0	0,078±0,069	35±47
Hand basin	<0,15	<2,5	<2,5	<5,0	<0,050	7,3±9,4
Kitchen	<0,15	<2,5	<2,5	<5,0	0,091±0,071	27±27
Laundry	<0,15	3,9±3,3	7,3±7,1	<5,0	0,20±0,16	43±29
Dish washer	<0,15	3,65±0,9	<2,5	<5,0	0,076±0,015	16,23±1,0

Qualitative greywater characterization emerging pollutants

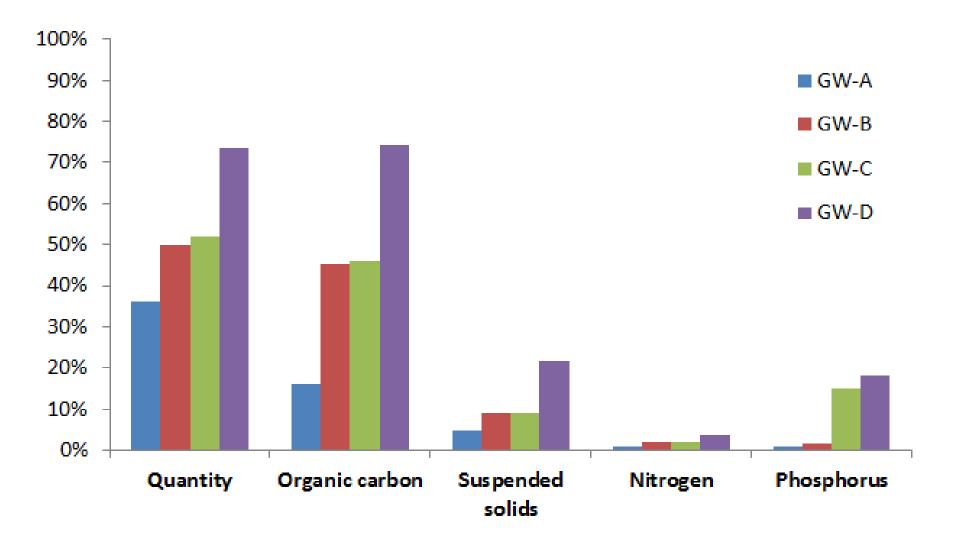
Greywater source	NP (µg/L)	NP1EO (µg/L)	NP2EO (μg/L)	TCS (μg/L)	BPA (µg/L)
Kitchen	15,2±18,5	1,46±2,03	1,30±2,84	0,0885±0,0970	0,0974±0,124
Bath/shower	32,8±12,7	3,22±2,68	2,39±1,49	0,436±0,385	0,701±0,510
Laundry	61,8±91,5	2,76±3,44	2,89±4,46	0,0991±0,0869	0,439±0,467
Hand basin	3,66±1,71	0,465±0,403	0,206±0,150	0,208±0,232	0,0268±0,0261

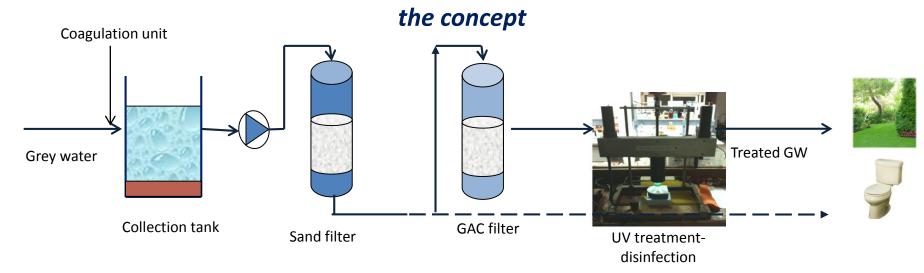

Qualitative greywater characterization

Greywater type	CODt (mg/L)	CODs (mg/L)	BOD₅ (mg/L)	TP (mg/L)	LAS (mg/L)	TN (mg/L)
GW-A ¹	398±112	210±113	272±73,1	0,37±0,61	70±25	2,6±1,9
GW-B ²	873±346	481±297	582±242	0,61±0,52	173±84	3,6±2,1
GW-C ³	861±286	476±259	571±233	5.43±1.5	169±48	3,6±2,7
GW-D ⁴	939±260	489±232	649±213	4.6±0,89	144±38	4,4±2,7

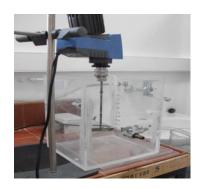
¹ refers to a mix of greywater originating from bath wastewater (bath and handbasin),

- ² bath, laundry, handbasin,
- ³ bath, laundry, handbasin, dishwaher,
- ⁴ bath, laundry, handbasin, dishwaher, kitchen


Qualitative greywater characterization

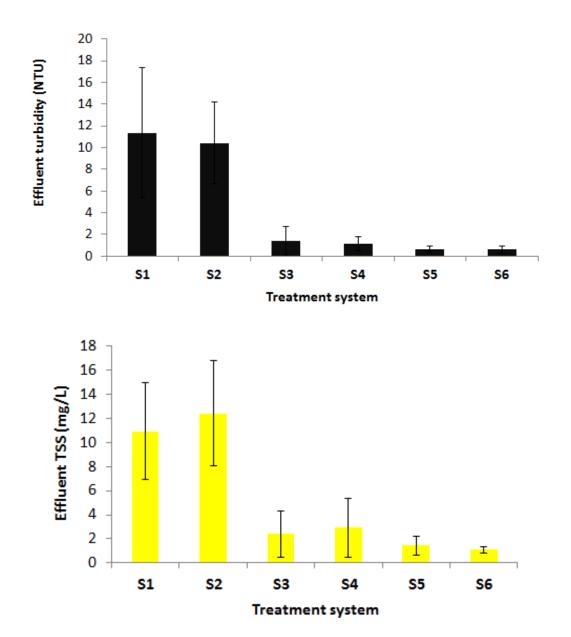

K BBL HB DW

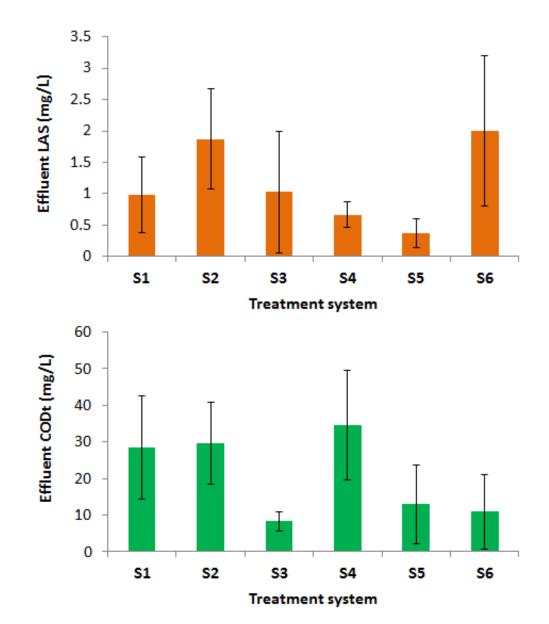
Contribution of several sources to the total greywater mass


Comparing with total wastewater

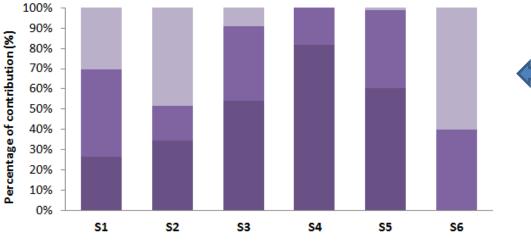
Greywater treatment

in the lab...

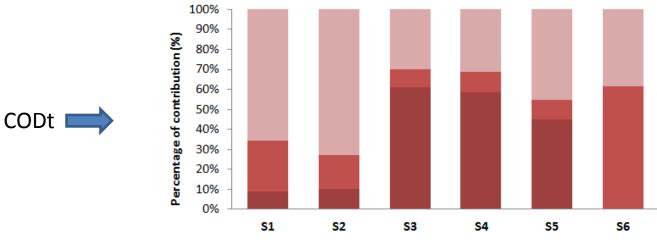



Greywater experimental treatment systems

Treatment System	Greywater source				Treatment stages				
	Kitchen	Laundry	Bath/shower	Handbasin	Coagulation	Sedimentation	Sand filter	GAC filter	
System 1			77%	23%		×	×	×	
System 2		29%	55%	16%		×	×	×	
System 3		29%	55%	16%	×	×	×	×	
System 4	13%	48%	25%	14%	×	×	×	×	
System 5	31%	38%	20%	11%	×	×	×	×	
System 6	13%	48%	25%	14%	×		×	×	

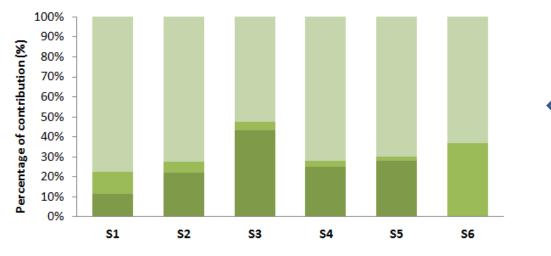

Greywater treatment systems – results

Greywater treatment systems – results



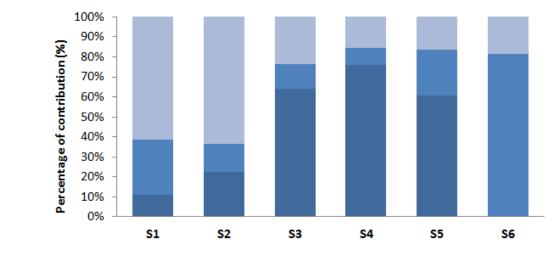
Greywater treatment systems – removal mechanisms

Treatment system



TSS

Treatment system


Greywater treatment systems – removal mechanisms

Treatment system

Sedimentation Sand filtration Activated carbon

LAS

CODs

Treatment system

Sedimentation Sand filtration Activated carbon

Conclusions

✤ The average daily wastewater production in Greece was estimated to 135 L per inhabitant and the 73% of this corresponds to greywater which is similar to values than have been reported by other researchers

Greywater characteristics are highly variable depending on the living standards, the products used, the income and the habits of the residents

Conclusions

Among the different sources, laundry and kitchen sink are the main contributors to the total greywater load of organic carbon and suspended solids, whereas bathtub and hand basin are the less polluted sources of greywater

✤The application of a treatment system consisting of coagulation, sedimentation, sand filtration, GAC filtration and disinfection can provide a high quality effluent for onsite reuse purposes.

13th IWA Specialized Conference on Small Water and Wastewater Systems

5th IWA

Specialized Conference on Resources-Oriented Sanitation

Thank you for your attention

European Union European Social Fund

MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS M A N A G I N G A U T H O R I T Y

Co-financed by Greece and the European Union

