

Environmental impact of source separation systems for blackwater, greywater and food waste in the H+ urban renewal project, Sweden

<u>Hamse Kjerstadius,</u> A. Bernstad Saraiva, J. Spångberg, Å. Davidsson

Method:

• Life cycle assessment with system boundary to include entire management chain.

DESCRIPTION OF SYSTEMS

Conventional system Source separation system

Conventional system

Source separation system

Indata:

- Process data from litterature (Ecolnvent database v.3), real plants or suppliers.
- Mass balances for organic material, phosphours and nitrogen.

Impact categories

Climate change	Return of nitrogen to farmland	Return of phosphorus to farmland
Kg CO ₂ eq	kg N	kg P

Functional Unit = Management of 1 capita load of FW, BW and GW year

RESULTS

Potential for nutrient recovery to farmland

 Source separation system increases nutrient return due to usage of struvite and ammonium stripper.

VM·CARO

Net results

Detailed results

- Sewer network
 Household installations
 Food waste management
 WWTP Amm. stripper & struvite
 WWTP N₂O emissions
 WWTP Heat pump
 WWTP Other
 Biogas upgrading & use
 Sludge & nutrient management
- Source separation systems decreases climate impact due to:
 - increased biogas production (replace diesel as vehicle fuel)
 - less N₂O-emissions from activated sludge (strong greenhouse gas)
 - Replaced nitrogen mineral fertilizer (nitrogen fixation is energy demanding)
 - Less emissions from sludge storage (methane and N_2O)

CONCLUSIONS

Conclusions:

- Source separation systems have a high potential for recovery of nutrients.
- Source separation systems decreases climate impact (with 21-56 kg CO₂ capita⁻¹ year⁻¹). Benefit is increased with "dirtier" european electricity mix.

If you want to reduce climate impact:

- Maximize biogas production and replacement of mineral fertilizer.
- Decrease emissions of nitrous oxide (N₂O) from your activated sludge plants.
- Decrease emissions of methane and nitrous oxide from sludge storage (dewater and cover the sludge storage).

Thank you for your attention

hamse.kjerstadius@chemeng.lth.se

HAMSE KJERSTADIUS

WATER AND ENVIRONMENTAL ENGINEERING, DEP. CHEMICAL ENGINEERING

