Introduction

Hydrogenotrophic Denitrification-(Biological treatment)
Biological reduction of nitrate to nitrogen gas under anaerobic conditions by direct immobilization of autohydrogenotrophic bacteria.

Key of this research focusing on H\textsubscript{2} supply
How to??
- Increase H\textsubscript{2} effectiveness under simple system
- Save H\textsubscript{2} supply (lowest H\textsubscript{2} with high efficiency)

Objective

- To comparative the physical characteristic and biological activity between ultrafine bubble system and common bubble system with suspended growth reactor
- To determine the specific hydrogen gas consumption and the effectiveness of hydrogen gas supply from both systems
- To investigated the microbial community present in the system.

Introduction

Hydrogenotrophic Denitrification-(Biological treatment)
Biological reduction of nitrate to nitrogen gas under anaerobic conditions by direct immobilization of autohydrogenotrophic bacteria.

Key of this research focusing on H\textsubscript{2} supply
How to??
- Increase H\textsubscript{2} effectiveness under simple system
- Save H\textsubscript{2} supply (lowest H\textsubscript{2} with high efficiency)

Objective

- To comparative the physical characteristic and biological activity between ultrafine bubble system and common bubble system with suspended growth reactor
- To determine the specific hydrogen gas consumption and the effectiveness of hydrogen gas supply from both systems
- To investigated the microbial community present in the system.

Introduction

Hydrogenotrophic Denitrification-(Biological treatment)
Biological reduction of nitrate to nitrogen gas under anaerobic conditions by direct immobilization of autohydrogenotrophic bacteria.

Key of this research focusing on H\textsubscript{2} supply
How to??
- Increase H\textsubscript{2} effectiveness under simple system
- Save H\textsubscript{2} supply (lowest H\textsubscript{2} with high efficiency)

Objective

- To comparative the physical characteristic and biological activity between ultrafine bubble system and common bubble system with suspended growth reactor
- To determine the specific hydrogen gas consumption and the effectiveness of hydrogen gas supply from both systems
- To investigated the microbial community present in the system.

Introduction

Hydrogenotrophic Denitrification-(Biological treatment)
Biological reduction of nitrate to nitrogen gas under anaerobic conditions by direct immobilization of autohydrogenotrophic bacteria.

Key of this research focusing on H\textsubscript{2} supply
How to??
- Increase H\textsubscript{2} effectiveness under simple system
- Save H\textsubscript{2} supply (lowest H\textsubscript{2} with high efficiency)

Objective

- To comparative the physical characteristic and biological activity between ultrafine bubble system and common bubble system with suspended growth reactor
- To determine the specific hydrogen gas consumption and the effectiveness of hydrogen gas supply from both systems
- To investigated the microbial community present in the system.
Methodology

Physical characteristic
- Bubble diameter
- Volumetric mass transfer coefficient (K_{La})
- Dissolved hydrogen concentration (DH)
- Decay rate and time of DH maintained in the reactor

Biological characteristic
- Specific H_2 consumption
- Long-term operation
- Microbial community

Fig1. Bubbling diffusers: a) Air stone b) Ultrafine bubble diffuser (MiBoS)

Results-Physical characteristic

Bubble diameter

- Average bubble were $25 \mu m$ for ultrafine bubble diffuser
- Average bubble was $1000 \mu m$ for Air stone diffuser

Volumetric mass transfer coefficient

- K_{La} (Volumetric mass transfer) : Ultrafine bubble ($0.045 s^{-1}$) > air stone ($0.002 s^{-1}$)

Dissolved hydrogen and decay rate

- Ultrafine bubble shows greater solubility in water faster that air stone bubble

“MiBoS” Diffuser

Air stone Diffuser

- Average bubble were $25 \mu m$ for ultrafine bubble diffuser
- Average bubble was $1000 \mu m$ for Air stone diffuser

- 40 times

Calculation

$$\ln\left(\frac{C_i - C}{C_i - C_0}\right) = -K_{La}(t - t_s)$$

where: C_i is saturated DH concentration
C_0 is DH concentration at initial point, t_s is DH concentration at time; t

Results-Physical characteristic

No H_2 supply

- Saturation conc. : Ultrafine bubble (1 mg/L) > Air stone (0.67 mg/L)
- DH existent in reactor: Ultrafine bubble (18 h) > Air stone (10 h)
Results-Biological characteristic

Specific hydrogen gas consumption

\[\text{NO}_3^- + 3.03 \text{H}_2 + 1.47 \text{HCO}_3^- + 0.229 \text{HCO}_3^- \rightarrow 0.477 \text{N}_2 + 3.6 \text{H}_2\text{O} + 0.0458 \text{C}_5\text{H}_7\text{O}_2\text{N} \]

- Minimum \(\text{H}_2 \) consumption: 0.45 ± 0.06 mg H\(_2\)/mg N (0.35-0.43)
- Nitrate to nitrite consumed: 0.16 ± 0.04 mg H\(_2\)/mg N (0.14-0.17)
- Nitrate removal rate: 3.55 ± 0.92 mg/gMLSS·h
- Hydrogen consumption rate: 1.61 ± 0.61 mg/gMLSS·h

Fig. 4 Correlation of \(\text{H}_2 \) consumption and nitrate removal at various biomass concentrations

Fig. 5. Layout of lab-scale hydrogenotrophic denitrification reactors

Synthetic groundwater (Kathmandu, Nepal):
- 48.5 NaNO\(_3\), 0.5 NaHCO\(_3\), 0.3 MgSO\(_4\)·7H\(_2\)O, 0.03 KH\(_2\)PO\(_4\), 0.18 CaCl\(_2\)·2H\(_2\)O, and trace elements I and II
- Nitrogen source: NO\(_3\)-N conc. = 40 mg N/L
- Operating condition: Biomass conc. = 40 mg N/L
 - Reactor volume = 2 L
 - HRT = 12 h
 - Temp. = 32°C
 - Design \(\text{H}_2 \) flow rate
 - Minimum \(\text{H}_2 \) consumption 0.45 mg N/mgH\(_2\)
 - Air stone = 1 mL/min

Methodology

Lab-scale HD reactor

- Design \(\text{H}_2 \) flow rate
- MiniBoS flow rate

Results-Biological characteristic

Performance of HD reactor

- Ultrafine bubble: Removal efficiency: 99% within 9 day operation
- Air stone: Removal efficiency: 20%

Fig. 6. Performance of reactors using ultrafine bubble and air stone diffuser

\[\text{H}_2 \text{H} \text{used by HD} = \frac{[\text{NRR(g/m}^3\text{·d)} x \text{V x Minimum } \text{H}_2 \text{ consumption (mgH}_2\text{/mg N)}]}{\text{Total } \text{H}_2 \text{ supply (g/d)}} \times 100 \]

\[\text{H}_2 \text{ released (%)} = 100 - \text{H}_2 \text{ used by HD} \]

\[\text{H}_2 \text{ effectiveness} = \frac{\text{Nitrogen removal rate (g/m}^3\text{·d)}}{\text{Total } \text{H}_2 \text{ supply (g/d)}} \times 100 \]

Calculation

- \(\text{H}_2 \) used by HD (%) = \(\frac{[\text{NRR(g/m}^3\text{·d)} x \text{V x Minimum } \text{H}_2 \text{ consumption (mgH}_2\text{/mg N)}]}{\text{Total } \text{H}_2 \text{ supply (g/d)}} \times 100 \)
- \(\text{H}_2 \) released (%) = 100 - \(\text{H}_2 \) used by HD
- \(\text{H}_2 \) effectiveness = \(\frac{\text{Nitrogen removal rate (g/m}^3\text{·d)}}{\text{Total } \text{H}_2 \text{ supply (g/d)}} \times 100 \)
Results-Biological characteristic

Total bacterial community

Next Generation Sequencing method (Illumina MiSeq)

- **Total bacterial community**
 - Air stone
 - Ultrafine Bubble

- **Fig8. Relative abundance of microbial community in the phylum and class levels under air stone and ultrafine bubble systems**

Conclusion

Ultrafine bubble supply system has efficiency and **H₂** utilization higher than normal bubble supply system in both physical part and biological part:

- High solubility (dissolve hydrogen concentration) and long retention time
- High volumetric mass transfer (0.045 s⁻¹) >> 20 times
- High system performance (99% of N removal) with less **H₂** supply (1 mL/min)
- High **H₂** effectiveness (1206.15 mgN/gH₂) under simple design, which was comparative with other research
- Save **H₂** (low **H₂** supply but high system performance)

The use of an **ultrafine bubble** diffuser is an option for enhancing the performance of a hydrogenotrophic denitrification reactor.
This research was performed with partial financial assistance from the Project for Hydro-Microbiological Approach for Water Security in Kathmandu Valley, Nepal” under the Science and Technology Research Partnership for Sustainable Development (SATREPS) program of JST and JICA, and the Japan Society for the Promotion of Science KAKENHI GRANT number 26340059.

Thank you for your kind attention