Impact of hydraulic retention time and temperature on an anaerobic moving bed biofilm reactor treating brewery wastewater

A. di Biase, T.R. Devlin, J.A. Oleszkiewicz

Dept. of Civil Engineering, University of Manitoba (Canada)
High-rate processes for industrial wastewater

Industry needs:
 Small footprint
 High capacity

Anaerobic digestion requires:
 Long SRT

1) High settleable sludge aggregates

2) Biofilm on high-density carriers

3) Biofilm on packing material
Anaerobic moving bed biofilm reactor

Influent ➔ Biogas ➔ Effluent

www.aqwise.com

www.veolia.com

www.headworksinternational.com

www.mutag-biochip.com
Objectives

- Examine performance under:
 - Increasing organic loading (4 to 22 kg sCOD/m³ d)
 - Decreasing hydraulic retention time (24 to 6 h)
 - A range of temperatures (35 to 15 °C)

- Performance measures:
 - COD removal and surface area loading rates (SALR)
 - Gas production/composition
 - Suspended/attached solids

- Develop design parameters
Brewery wastewater

- Rich in organic carbon
- Valuable for biogas production

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical brewery wastewater</th>
<th>Fort Garry Brewery</th>
<th>Limit for sewer discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winnipeg (Canada)</td>
</tr>
<tr>
<td>BOD$_5$ (g/L)</td>
<td>1 – 3.5</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td>COD (g/L)</td>
<td>2 – 6</td>
<td>7</td>
<td>0.45</td>
</tr>
<tr>
<td>TSS (g/L)</td>
<td>0.2 – 1</td>
<td>0.4</td>
<td>0.35</td>
</tr>
<tr>
<td>pH</td>
<td>4.5 – 12</td>
<td>4 – 11</td>
<td>5.5 – 9.5</td>
</tr>
<tr>
<td>Temperature</td>
<td>24 – 30.5</td>
<td>N.A.</td>
<td>-</td>
</tr>
</tbody>
</table>

1 City of Winnipeg (Canada) bylaw No.92/2010
2 D. Lgs. 152/06 (Parte Terza, Allegato 5, Tabella 3) for Veneto Province
Setup – Hydraulic retention time (HRT)

Feed Tank

Heat Exchanger

Mixer

Biogas

Effluent

Headworks BIO - AC920
Protected surface area
680 m²/m³
Three reactors (4L):

- 40% media fill
- 1.1 m² available surface area

HRT (hours):
- 24
- 18
- 12
- 10
- 8
- 6

OLR (kg COD/m³ d):
- 4
- 5.5
- 10
- 14
- 21
- 22
Setup – Temperature (T°C)

Operational parameters

15°C
25°C
35°C

Three reactors (4L):
50 % Media fill
1.4 m² available surface area
Performance – HRT

Influent
~ 3.5 g sCOD/L

sCOD removal (%)

OLR as TCOD

Influent
~ 3.5 g sCOD/L

Organic loading rate
(kg TCOD/m³d)

8h HRT
80% Removal

Time (d)
8h HRT pH drops down
Increased alkalinity addition

62 % CH₄
32 % CO₂
Engineering significance – HRT

Process less efficient above 50 g sCOD/m²d
Attached solids – T°C

Thickness decreases as Temperature increases

Total suspended solids (mg/one unit media)

Temperature (°C)

TSS
UASB Vs AMBBR solids – T°C

Upflow anaerobic sludge blanket*
~ 6.2 g VSS/L at room temperature
(19-24 °C)
with organic loading rate of
3 kg COD/m³d

Volatile suspended solids (g/L)

VSS

Temperature (°C)

15
25
35

Influent 3.5 g sCOD/L

Performance – T°C

Specific removal rate (g sCOD/g VSS d)

- Correlation

Organic loading rate (kg sCOD/m³d)

Strong correlation $R^2 = 0.9966$
Biogas – T°C

Biogas composition (%)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>15</th>
<th>25</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CO₂</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Unit methane generation (m³ CH₄/kg sCOD)

<table>
<thead>
<tr>
<th>Theoretical values</th>
</tr>
</thead>
<tbody>
<tr>
<td>15°C</td>
</tr>
<tr>
<td>25°C</td>
</tr>
<tr>
<td>35°C</td>
</tr>
</tbody>
</table>
Engineering significance – T°C

![Graph showing sCOD removal vs. surface area loading rate at 35°C, 25°C, and 15°C.]

- **35°C**
- **25°C**
- **15°C**

y-axis: sCOD removal (%)
x-axis: Surface area loading rate (g sCOD/m²d)
Conclusions

- At organic loading rates above 20 kg sCOD/m3 d methanogenesis started to be decoupled from fermentation
- 80% COD removal with a methane yield of 0.36 m3 CH$_4$/kg COD$_{rem}$
- Surface area loading rates must not exceed 50 g sCOD/m2d

At typical brewery wastewater temperature of 28°C:

- Methane yield of 0.31 m3 CH$_4$/kg COD$_{rem}$ is expected
- Surface area loading rates of 11 g sCOD/m2d will ensure 80% sCOD removal
Questions?

University of Manitoba