Impact of hydraulic retention time and temperature on an anaerobic moving bed biofilm reactor treating brewery wastewater

A. di Biase, T.R. Devlin, J.A. Oleszkiewicz

Dept. of Civil Engineering, University of Manitoba (Canada)

UNIVERSITY OF MANITOBA Faculty of Engineering

High-rate processes for industrial wastewater

Industry needs:

Small footprint

High capacity

Anaerobic digestion requires: Long SRT 1) High settleable sludge aggregates

2) Biofilm on high-density carriers3) Biofilm on packing material

Anaerobic moving bed biofilm reactor

www.veolia.com

www.mutag-biochip.com

Objectives

- Examine performance under:
 - Increasing organic loading (4 to 22 kg sCOD/m³ d)
 - Decreasing hydraulic retention time (24 to 6 h)
 - A range of temperatures (35 to 15 °C)
- Performance measures:
 - COD removal and surface area loading rates (SALR)
 - Gas production/composition
 - Suspended/attached solids
- Develop design parameters

Brewery wastewater

- Rich in organic carbon
- Valuable for biogas production

	Typical brewery wastewater	Fort Garry Brewery	Limit for sewer discharge	
			Winnipeg (Canada) ¹	Veneto (Italy) ²
BOD ₅ (g/L)	1-3.5	5	0.3	0.25
COD (g/L)	2-6	7	0.45	0.5
TSS (g/L)	0.2 – 1	0.4	0.35	0.2
pН	4.5 – 12	4 – 11	5.5 - 9.5	5.5 – 9.5
Temperature	24 - 30.5	N.A.	-	-

¹City of Winnipeg (Canada) bylaw No.92/2010

² D. Lgs. 152/06 (Parte Terza, Allegato 5, Tabella 3) for Veneto Province

Setup – Hydraulic retention time (HRT)

Setup – HRT & OLR

Setup – Temperature (T°C)

Three reactors (4L):

50 % Media fill

1.4 m² available surface area

Performance – HRT

Process efficiency – HRT

Engineering significance – HRT

Attached solids – T°C

UASB Vs AMBBR solids – T°C

*Cronin (1998) "Anaerobic treatment of brewery wastewater using a UASB reactor seeded with activated sludge". Bioresource Technology 64; 33-38.

Performance – T°C

Biogas – T°C

Engineering significance – T°C

Conclusions

- At organic loading rates above 20 kg sCOD/m³ d methanogenesis started to be decoupled from fermentation
- 80% COD removal with a methane yield of 0.36 $m^3 CH_4/kg COD_{rem}$
- Surface area loading rates must not exceed 50 g sCOD/m²d

At typical brewery wastewater temperature of 28°C:

- Methane yield of $0.31 \text{ m}^3 \text{CH}_4/\text{kg COD}_{\text{rem}}$ is expected
- Surface area loading rates of 11 g sCOD/m²d will ensure 80% sCOD removal

University of Manitoba

