

Environmental assessment of alternative treatments for wastewater and domestic organic waste

L. Lijó*, M.T. Moreira*, E. Katsou**, S. Malamis*** and S. Gonzalez-García*

- * Department of Chemical Engineering, University of Santiago de Compostela
- **Department of Mechanical, Acrospace and Civil Engineering, Brunel Univeristy
- ***Department of the Environmental Engineering, School of Civil
 - University of Athens

Wastewater treatment schemes

Centralised WWT

Decentralised WWT

- ✓ Criteria for selection of the most suitable approach:
 - Cost effectiveness
 - Feasibility of the management system
 - Specific conditions of the target area

Wastewater treatment technologies

Treatment

UASB at ambient temperature as the core technology

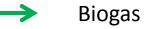
Advantages	Disadvantages
High efficiency	Low pathogen removal
Flexibility	Low nutrient removal
Low space requirements	Long start-up
Low energy consumption	Possible bad odours
Low sludge production	Necessity of post-treatment
Low chemicals requirement	High dissolved methane at ambient temperature

Post-treatment

- Anaerobic membrane low energy requirements
- Sequencing batch reactor -> nutrient removal of water reuse

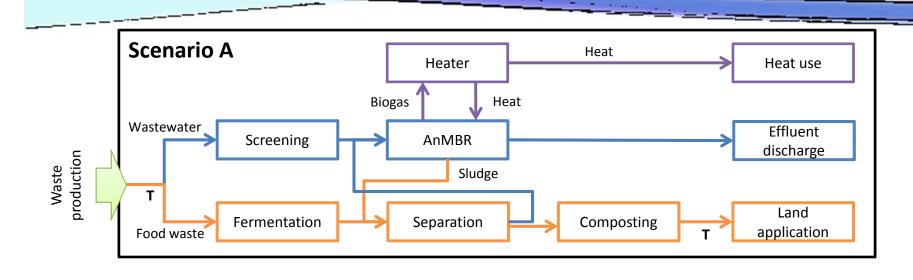
Objective

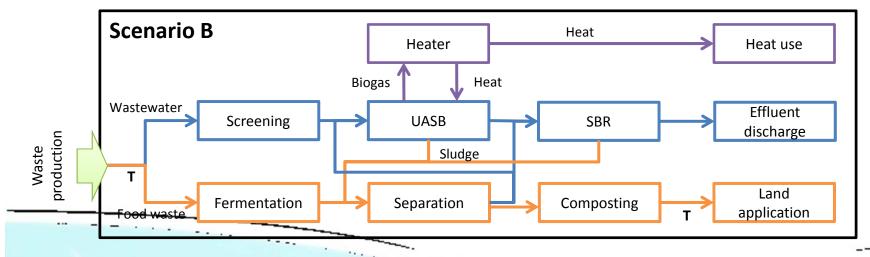
Objective:


Environmental evaluation of two integrated schemes for the co-treatment of domestic wastewater and DOW in a decentralised community of 2,000 PE.

Wastewater

Integrated treatment scheme





Domestic organic waste -> (DOW)

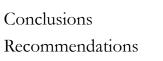
Case study

Life Cycle Assessment (LCA)

Inventory data collection

Inputs from Technosphere			
Electricity 1000 kWh			
Outputs to Environment			
CH ₄	60	kg	
N ₂ O	0.1	kg	

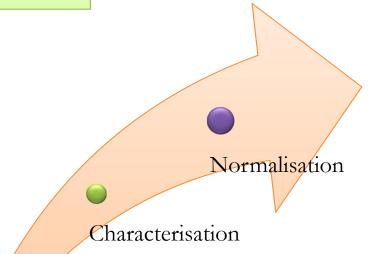
Impact assessment


Environmental results			
Impact categories	Α	В	С
Climate change	10	60	-1
Acidification	5	15	-5
Eutrophication	0.8	1	0

Interpretation

Recommendations Improvement options

Goal and scope definition

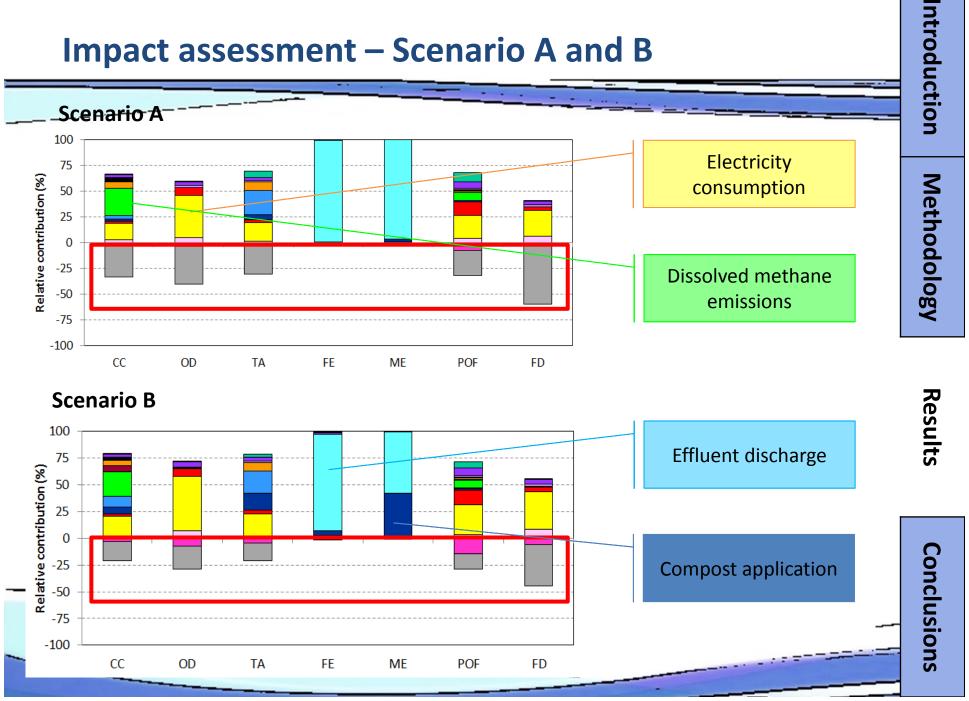

Life Cycle Assessment (LCA)

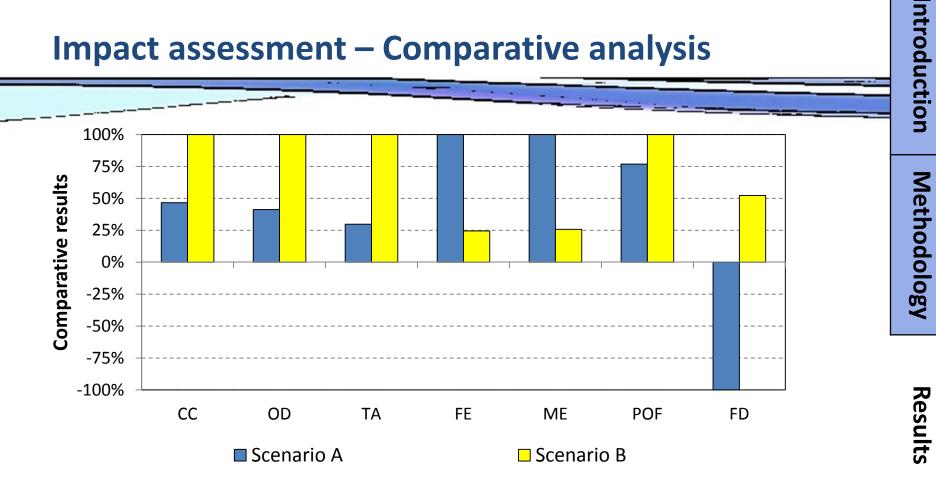
FU: Management of the wastewater and DOW produced by 2,000 inhabitants per day

ReCiPe Midpoint and Endpoint Methodologies

Characterisation results

- Climate change (CC)
- Ozone depletion (OD)
- Photochemical oxidant formation (POF)
- Fossil depletion (FD)
- Water depletion (WD)
- Terrestrial acidification (TA)
- Freshwater eutrophication (FE)
- Marine eutrophication (ME)


Classification


Main parameters

Input flow	Units	Wastewater	DOW
la accet	m³/d	400	
Input	kg/d		500
COD	mg/L	600	1200
N	mg/L	60	25
Р	mg/L	9	3

Parameter	Unit	Scenario A	Scenario B
Methane production	m³/d	96	61
Heat production	kWh/d	897	570
Final effluent			
· Flow	m³/d	402	401
·TS	mg/L	0	26
· COD	mg/L	80	41
·N	mg/L	63	9.6
. P	mg/L	8.5	1.95
Compost production	kg/d	300	616

Impact assessment – Scenario A and B

Normalisation results		
Scenario A	Scenario B	
10.86	2.83	

Conclusions

- **Environmental hotspots** of the proposed treatment scheme:
 - Electricity production → energy related categories
 - Emissions derived form the dissolved methane in the anaerobic effluent
 - Discharge of the effluent → eutrophication related categories
- Specific **environmental advantages** → valuable products production
 - Heat from biogas → avoided fossil-based heat
 - Compost production → avoid the use of peat as soil conditioner
- Scenario B achieved better results in **eutrophication related categories**
 - Implementation of biological nutrient removal
- Scenario B achieved worse results in energy related categories and TA
 - Nutrient removal requires high energy requirements and sludge production
- Both treatment scenarios achieve discharge limits; however, only
 - Scenario B achieves reuse requirements.

Acknowledgements

This research was supported by the **BBVA programme "2015 edition of the BBVA Foundation Grants for Researchers and Cultural Creators"** (2015-PO027) and by the UE project **LIVE-WASTE** (LIFE 12 ENV/CY/000544).

Ayudas Fundación **BBVA** a Investigadores y Creadores Culturales

Environmental assessment of alternative treatments for wastewater and domestic organic waste

L. Lijó*, M.T. Moreira *, E. Katsou**, S. Malamis*** and S. González-García *

Department of Clamical Engineering, University of Santiago de Compostela

ace and Civil Engineering, Brunei University

Livitonmental Engineering, School of Civil

and Technical Engineering