

Assessing factors affecting the reduction of phosphorus and faecal microbes in wastewater by decentralised wastewater treatment systems

J. C. Akunna*, J. O'Keeffe*, L. May**, and R. Allan***

* Division of Natural and Built Environment, Abertay University, Scotland, ** Centre for Ecology & Hydrology, UK *** The James Hutton Institute, Scotland

Definition

- Decentralised systems
 - small-scale
 - commonly used in rural and isolated locations
 - domestic and/or commercial and industrial
 - developing and developed world

Types

[Standalone or in various combinations]

- Septic tanks, ST (most common)
- Constructed wetlands, CW (common)
- Reedbeds, wastewater stabilisation ponds, etc.
- Filtration systems
 - Media: soil/minerals, plastics, plants, etc.
- Chemical coagulation/flocculation/settling systems
- Package systems
 - Aerobic/anaerobic completely mixed liquor and fixed film systems, etc.

Challenges

- Usually bought off the shelf
 - system selection and operation less informed by robust wastewater characterisation, lifestyle of owners, and general site and climatic conditions
 - Often marketed by non-sector professionals
- System efficiency subject to operational 'trial and error' and non-committing maintenance culture
- Performance often suffers from poor consumer awareness leading to increased costs and conflicts with environmental regulators

Common DWST target pollutants: Solids, BOD, Ammonia

Traditional DWST are <u>not</u> commonly designed for Phosphorus and Pathogen removal

Our research

- Review effectiveness of small DWTS for phosphorus and pathogen removal
- Assess factors affecting the efficiency of various DWTS in the removal of these pollutants; and
- Propose measures to improve effectiveness of DWTS for new and existing systems

DWTS in Scotland

In rural Scotland approximately 160,000 properties rely on DWTS to treat their wastewater.

DWTS have been estimated to contribute approximately 23.5% of diffuse load of E. Coli , and 7.6% of the total load (diffuse and point source) to Scottish groundwaters and surface waters (SNIFFER 2006)

Type of discharge location	Private Untreated	Private Preliminary	Private primary	Private Secondary	Private Tertiary	Number of discharge locations	% discharge location
Sea	64	1	861	88	8	1,022	1.7
Inland water	118	3	10,439	2,439	196	13,195	21.3
Soakaway/ land	351	8	44,481	1,990	102	46,932	75.9
Insufficient data	11	2	466	179	12	670	1.1
Total	544	14	56,247	4,696	318	61,819	100
% of all discharges	0.9	0.0	91.0	7.6	0.5	100	

Sources of Phosphorus

Source apportionment of phosphorus in raw domestic waste water (Defra 2008)

Source	Contribution to phosphorus load
Faeces	23%
Urine	41%
Food waste	5%
Mains supply (phosphate added to reduce Pb in drinking water)	5%
Toothpaste	1%
Dishwasher detergent	7%
Laundry detergent	18%

Mean phosphorus concentrations in septic tank effluent

(Influent TP ~ 6.6 - 26.8 mg l⁻¹ Lowe et al. 2007, Jenssen et al. 2010)

STE conce (mg		System details	Reference	
SRP	ТР			
1.9	3.3	Old ST; no soil adsorption bed (field drain discharge)	Ockenden <i>et</i> <i>al</i> . 2014	
1.4	1.9	Old ST supplemented with modern tank (field drain discharge)	Ockenden et al. 2014	
4.8 (0.3-10.6)	9.1 (4.5-18.0)	STs (4) median concentrations	Brownlie <i>et al</i> . 2014	
8.8 (2.3-11.9)	11.9 (5.8-14.4)	ST (1) with mechanical mixing (4 mo median)	Brownlie <i>et al</i> . 2014	
5.5 (1.4-10.6)	9.3 (1.9-14.4)	ST with chemical dosing, aeration and filter system (median from two STs over 4 mo)	Brownlie <i>et al</i> . 2014	
11.6	15.0	ST (concrete)		
14.5	18.4	ST (brick)		
9.4	17.4	ST (concrete)	May <i>et al</i> . 2014	
13.4	15.0	ST (brick)	-01	
10.7	12.9	Klargester [®] PTP		

Mean pathogen concentrations in <u>raw</u> wastewater and <u>septic tank effluent (</u>UK and Ireland)

Parameter	Mean concentration in <u>raw</u> wastewater (cfu 100 ml ⁻¹)	Mean concentration in septic <u>tank effluent (</u> cfu 100 ml ⁻¹)	Reference
	3.9 x 10 ⁷	2.5 x 10 ⁷	Kay et al. 2008
Total coliforms	-	7 x 10 ⁸	Gill et al. 2007
	2.0-3.5 x 10 ⁸	-	Kadam et el. 2008
	1.2 x 10 ⁷	-	Harrison et al. 2000
Faecal coliforms	2.0-8.0 x 10 ⁷	-	Kadam et el. 2008
	1.7 x 10 ⁷	7.2 x 10 ⁶	Kay et al. 2008
	-	2.9 x 10 ⁵	Pundsack et al. 2001
	1.9 x 10 ⁶	9.3 x 10 ⁵	Kay et al. 2008
Enterococci	1.0 x 10 ⁶	-	Blanch et al. 2003
E. coli	1.2-3.3 x 10 ⁶	-	Kadam et el. 2008
	-	5.0 x 10 ⁵	Gill et al. 2007

Common removal processes

- Phosphorus
 - -Adsorption
 - -Uptake

- Pathogens
 - -Inactivation
 - -Immobilisation
 - -Predation
 - -Natural die-off

Phosphorus Removal

Phosphorus removal by various systems

DWTS type	% TP reduction in effluent	Reference
Soil filter beds (aged 14 – 22 years)	12	Eveborn <i>et al.</i> 2012
One-chambered ST	29.3	Nasr and Mikhaeil 2013
Three-chambered ST	33.1	Nasr and Mikhaeil 2013
Klargester RBC (PTP)	47.6	Kingspan Environmental 2010
Sequencing batch reactor (SBR) package treatment plant (PTP)	87.5	Akunna and Jefferies 2000
CW (during the first year)	60	Ockenden et al. 2014
ST plus two-step vertical flow CW	71.4	Nguyen <i>et al</i> . 2007
ST plus subsurface flow CW (un-planted)	85.7	Chang et al. 2011
ST plus subsurface flow CW (planted)	95.7-98.3	Chang et al. 2011
ST plus sand filter bed	almost 100	Robertson 2012
ST plus peat filter	Year 1: 50 Year 12: 26.6	Patterson 2001
ST plus filter bed systems (biofilter (LWA) and media filter bed (Filtralite P [®])	> 94	Jenssen <i>et al</i> . 2010

Performance of various filter materials used in Constructed Wetland (Vohla *et al.* 2011)

Material	Study type	P treatment efficiency		
Shellsand	Meso-scale CW in field, HSSF filter in greenhouse for household	Saturated before 2 yrs,		
Gravel	Three gravel based CWs, 2° effluent, 2 years	P removal -40% to 40%;		
	Full-scale CW, VSSF planted gravel filter	PO ₄ ³⁻ -P removal 4.33%		
Wollastonite tailings	Full-scale CW SSF wetland cell (wastewater from dairy farm)	Soluble P removal 12.8%		
Limestone	Full-scale CW (SSF wetland cell treating wastewater from dairy farm, 1.5 years)	P removal 14.5%,		
Linestone	Meso-scale experimental CW received effluent from a treatment wetland for 19 months	TP removal 46%		
Norlite	Full-scale SSF CW cell, dairy wastewater	P removal 34%		
Marl gravel	Full-scale CW, Filter treating swine wastewater after anaerobic lagoon treatment	TP removal 37-52%		
Peat	Small-scale CW in field (landfill leachate from activated sludge plant and bio-pond)	TP removal: 77% from sludge water, 93% from bio-pond water (at 6 mo.)		
Sand	Full-scale CW, HSSF sand filter	P removal 72% (8 yrs)		
Sanu	Full-scale CW, HSSF sand filter	P removal 78.4% (5 yrs)		
Blast furnace slag	Full-scale CW VSSF reed bed, granulated BFS	TP removal 45%		
(BFS)	Small-scale CW (dairy farm wastewater, seven months.)	P removal 72%		
	Full-scale CW (seven months)	TP removal up to 99%		
Fly ash	Full-scale CW, three stage system, one filled with fly ash	TP removal about 83%		
Filtralite-P [®]	Full-scale CW, upflow filter 3 years	P removal 99.4%		
Leca (Estonian)	Full-scale CW, VSSF + HSSF filter bed, 2 years	TP removal 89%		
LWA(Norsk Leca)	Full-scale CW (wastewater from households, 4 years)	P >95% removal		

Pathogen Removal

Pathogen removal efficiency: Basic systems

	Total coliforms		Faecal coliforms		E. coli		Entei	Ref	
Treatment type	Conc (cfu/100 ml)	Removal %	Conc. (cfu/100 ml ⁾	Removal %	Conc. (cfu/100 ml)	Removal %	Conc. (cfu/100 ml)	Removal %	
ST only	5.98 x 10 ⁷	37.40	2.53 x 10 ⁷	40.17	-	-	-	-	Mbuligwe 2005
ST only	2.5 x 10 ⁷	35.9	7.2 x 10 ⁶	57.6	-	-	-	-	Kay <i>et al.</i> 2008
ST + soil drainage field	-	-	-	90	-	85	-	-	Tomaras et al. 2009
	-	-	1.60 x 10 ⁶ - 1.6 x 10 ⁷	82.0-98.6	-	-	-	-	Harrison <i>et</i> <i>al</i> . 2000

Pathogen removal efficiency: ST + natural media filters

Treatment	Total coli	forms	Faecal coli	forms	E. coli		Enteroc	occi	Ref
type	Conc (cfu/100 ml)	Removal %	Conc (cfu/100 ml)	Remova I %	Conc (cfu/100 ml)	Removal %	Conc (cfu/100 ml)	Removal %	
ST + Constructed soil filter	1.5 x 10 ⁵ - 3.6 x 10 ⁵	99.80- 99.93	3.1 x 10 ⁴ –8.3 x 10 ⁴	99.56- 99.92	1.5 x 10 ⁴ - 2.4 x 10 ⁴	98.91- 99.95	-	-	Kadam <i>et</i> <i>al</i> . 2008
	-	-	4.2 x 10 ⁴ – 1.8 x 10 ⁵	99.4- 99.96	-	-	-	-	Harrison <i>et</i> <i>al</i> . 2000
ST + sand filter	_		(35-60)	99.986- 99.992			_		Pundsack
		_	(110-220)	99.93- 99.96					<i>et al.</i> 2001
			6	99.997					
	-	-	4-5	99.9984 - 99.9987	-	-	-	-	Pundsack et al. 2001
ST + peat			<200(initial)	>99.96					
filter	_	_	650 (12 mo)	99.90	_			Patterson	
			1650 (6 yr)	99.70					1999 ^c
			3200 (13 yr)	99.50					
	-	-	-	-	2.7 x 10 ³ -1.2 x 10 ⁴	97.60- 99.95	-	-	Gill <i>et al.</i> 2007

Pathogen removal efficiency: ST plus CW (alternative filter media)

	Total col	iforms	Faecal co	liforms	E. coli		Enterococci		Ref
Treatment type	Conc (cfu/100 ml)	Removal %	Conc (cfu/100 ml)	Removal %	Conc (cfu/100 ml)	Removal %	Conc (cfu/100 ml)	Removal %	
	-	99.50	-	-	-	99	-	-	O'Luanaigh <i>et al.</i> 2009 (reed bed)
			400-500	99.87					Pundsack et al. 2001
ST plus CW	-	-	5900-7100	99.83	-	-	-	-	(cattails and bulrush)
	4.5 x 10 ³	>99.99	3 x 10 ³	>99.99	-	-	-	-	Mbuligwe 2005 (engineered CW)
Subsurface upflow CW plus filter media (treating STE)	-	-	71-1738	97.06- 99.98	<1-63	99.80 - 100	-	-	Chang <i>et al</i> . 2011
ST plus biofilter (LWA) plus media filter (LWA- Filtralite-P®)	-	-	0-<3	~100%	0	~100%	<10 to <300	~100%	Jenssen <i>et</i> al. 2010

Summary

- The most effective measures:
 - Maximise physical removal, through adsorption and filtering, (maximise solids reduction)
 - Immobilise pathogens within the soil encourage favourable conditions for retention (biomat) and microbial predation of pathogens
 - Maintain good conditions for biological uptake of phosphorus
 - Are designed to production characteristics, as well as to site specific conditions; Maintain efficacy of filter media by renewing over time

Summary

- ST most common but alone provide limited treatment
- Package plants are more generally amenable for phosphorus removal – limited data for pathogens
- Filtration-based treatment systems are <u>most</u> effective for removal of <u>both</u> pollutants; efficiency depends upon
 - Type of filter media and configuration
 - Time of operation, and performance over time
 - Climatic conditions
- Constructed wetland systems are also effective for the removal of <u>both</u> pollutants; efficiency also depends on:
 - Climatic condition (e.g. temperature, rainfall), wastewater characteristics and types of pre-treatment.

Perspectives

- Data
 - influent and effluent concentrations!
 - efficiency of package treatment plants on P and pathogen removal
 - Pathogen reductions limited range of organisms have been studied (bacteria); effect on viruses not well covered
- Study of the impact of operation and maintenance on releases of P and pathogens (evidence of P increases from desludging)

Thank you for listening!

