

Effect of different bypass rates in hybrid vertical-horizontal flow constructed wetlands treating synthetic and real municipal wastewater

O.G. Gonzalo, I. Ruiz, M. Soto

13th IWA Specialized Conference on Small Water and Wastewater Systems & 5th IWA Specialized Conference on Resources-Oriented Sanitation Athens, Greece, 14-17 Setember 2016

MATERIAL AND METHODS

INTRODUCTION

Constructed wetlands (CWs) vantages:

- Low cost and eco-flriendly technologies
- Natural processes to remove pollutants
- Avoiding the use of chemical products
- Avoiding the use of external energy

CWs limitations:

- Single stage CWs are not able to get the more stringent discharge limits for nitrogen due to their inability to provide alternant aerobic and anoxic conditions for the nitrification/denitrification processes
- High land area requirement

Classical nitrification-denitrification routes require:

- maintaining alkalinity
- sequential aerobic-anaerobic conditions
- availability of ready biodegradable carbon in the anoxic step

Intensified CW systems consist of more sophisticated process design, including:

- hybrid or staged CW systems,
- recirculation of wastewater,
- continuous or intermittent artificial aeration

One of the simplest hybrid CWs configuration: VF+HF (= sequential aerobic and anaerobic conditions)

Reviewed hybrid CW systems (Gaboutloeloe et al., 2009; Vymazal, 2013):
VF+HF hybrid CWs are slightly more efficient in ammonia removal than other hybrid configurations

- All types of hybrid constructed wetlands are more efficient in total nitrogen removal than single HF or VF constructed wetlands
- The most limiting factor TN removal in hybrid VF+HF systems was nitrate accumulation
- This was due to the excessive carbon depletion during the aerobic phase (VF step)

Torrijos et al., 2016:

HF/VF area ratio: 0.5-7.6 (2.7 on average in literature)

Influent bypass to the second HF unit has not been reported

OBJECTIVES

Previous work (Torrijos et al., Wetpol 2015):

- ➢ Hybrid VF+HF CW, HF/VF area ratio = 2.0, bypass up to 50% → Bp(VF:HF)_{1:2} system
- Ammonia and mainly nitrate accumulated in the effluent
- Conclusion: even at 50% bypass, operational conditions in HF unit (DO, ORP, COD/TN ratio) were not suitable enough for advanced denitrification.

Hypothesis: a lower HF/VF area ratio would require a lower bypass ratio, improving denitrification and TN removal. Thus, we study the following system:

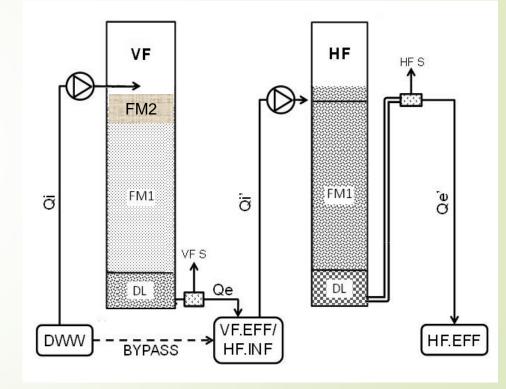
Hybrid VF+HF CW, HF/VF area ratio = 0.5, by-pass \rightarrow Bp(VF:HF)_{2:1} system

And the objective is:

- to check the effect of bypass and HF/VF area ratio on TN removal in a hybrid VF+HF CW.
- to check if synthetic and real municipal wastewater gives different results

MATERIAL AND METHODS

Configuration of the hybrid Bp(VF+HF)²¹ system


Lab columns were used to simulate CW units:

- VF: unsaturated unit
- HF: saturated unit

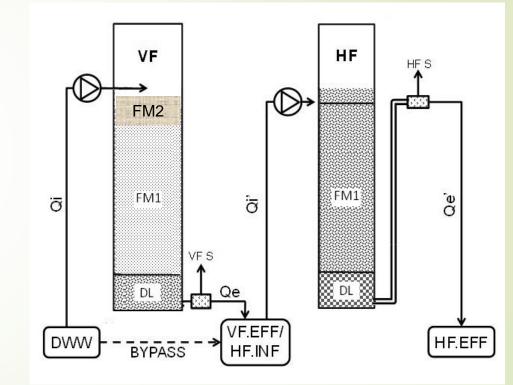
M&M

HF/VF area (cross-sectional) ratio: 0.5

Column	Drainage layer (DL)	Main filtering medium (FM1)	Upper layer (MF2)				
VF	6-12 mm gravel	32 cm height 1-3 mm sand (d ⁶⁰ 2.5)	5cm height 0-2 mm sand (d ⁶⁰ 0.9)				
HF	20 mm gravel	40 cm height 6-12 mm gravel					

M&M

VF operation:


- 12 pulses per day, free drained
- Resting: 3 days ON, 4 days OFF

HF operation:

- Continuous saturated conditions
- Frequent pulses (>16 pulses a day)
- HF influent: VF effluent + raw wastewater (By-pass)

Other conditions:

- Thermostatic chamber at 20°C
- Influent and effluent tanks: in fridge at 10 °C
- Units not planted

M&M Characteristics of influent wastewater

Influent	рН	TSS	VSS	COD	BOD ₅	TN	NH ₃ -N	NO ₃ ⁻ -N	PO ₄ ³⁻ -P
SW	$\textbf{7.0}\pm\textbf{0.2}$	120 ± 32	106 ± 10	539 ± 48	260 ± 49	78 ± 8	8 ± 1	3 ± 1	11 ± 2
MW	7.2	81 ± 26	73 ± 27	$405 \pm \!$	225 ± 44	57 ± 3	45 ± 7	2 ± 1	5.4 ± 1

SW: synthetic domestic wastewater. MW: real municipal wastewater. Concentration in mg/L.

Real wastewater (MW): raw influent to the municipal treatment plant of A Coruña, after 2 h settling.

Concentrated SW and MW batches kept at 4 °C until the moment of use.

MW had a slightly lower concentration and was highly ammonified

M&M Sampling and analysis

Integrated daily samples

Parameters: TSS, VSS, COD, BOD₅ (only for the final effluent), ammonia, nitrate and TN.

In situ (on stream) parameters: pH, ORP, DO (dissolved oxygen)

 $Q_{INHF} = Q_{VF} + Q_{Bp}$ $S_{INHF} = (Q_{VF} \cdot S_{VF} + Q_{Bp} \cdot S_{WW}) / Q_{INHF}$ $Bp (\%) = (Q_{Bp} / Q_{VFIN}) \cdot 100$

Q_{VF}: VF effluent pumped to the HF column

Q_{Bp}: bypass flow to HF column

Bp (%): bypass flow as percentage of influent flow to VF

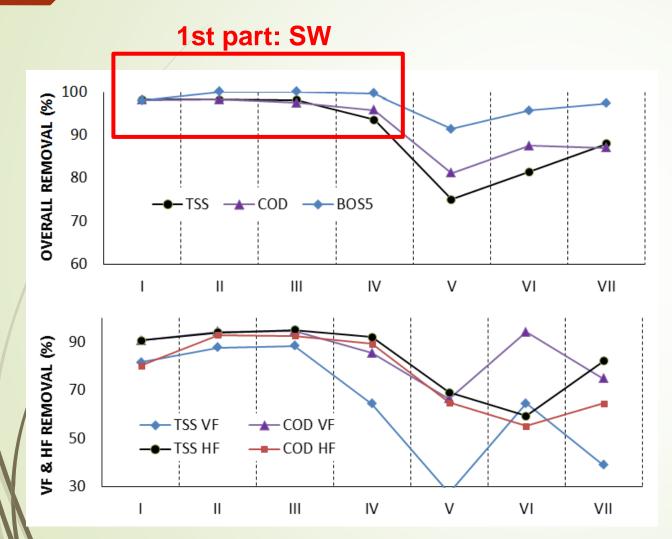
S_{INHF}: calculated influent concentration to HF

MATERIAL AND METHODS

Operational characteristics

1st part: SW

PERIOD	I			IV	V	VI	VII
(days)	(0-49)	(50-75)	(76-104)	(105-125)	(126-153)	(154-165)	(166-180)
Wastewater	SW	SW	SW	SW	MW	MW	MW
Bypass to HF (% Inf. VF)	0	26.0	39.7	38.6	34.4	18.1	30.3
Overall HLR (mm/d)	76.5	96.8	109.3	128.7	124.2	72.6	79.5
Overall SLR (g/m ² ·d)							
TSS	9.3	11.7	13.2	15.6	9.9	6.0	6.5
CØD	45.1	57.0	64.4	75.8	53.0	27.9	30.6
∕BOD ₅	19.4	24.5	27.6	32.6	28.9	16.0	17.5
TN	5.8	7.3	8.2	9.7	7.0	4.3	4.7
VF SLR (g/m ² ·d)							
TSS	14.2	14.3	14.6	17.3	11.4	7.8	7.7
COD	69.4	69.7	70.9	84.1	60.6	36.4	36.1
BOD ₅	29.8	29.9	30.4	36.1	33.1	20.8	20.7
TN	8.9	8.9	9.1	10.8	8.0	5.6	5.5
HF SLR (g/m ² ·d)							
TSS	4.8	8.0	13.7	24.2	22.7	7.5	12.6
COD	11.8	31.9	59.0	85.0	80.0	24.5	32.3
TN	13.7	13.8	19.2	22.0	14.1	12.6	11.3

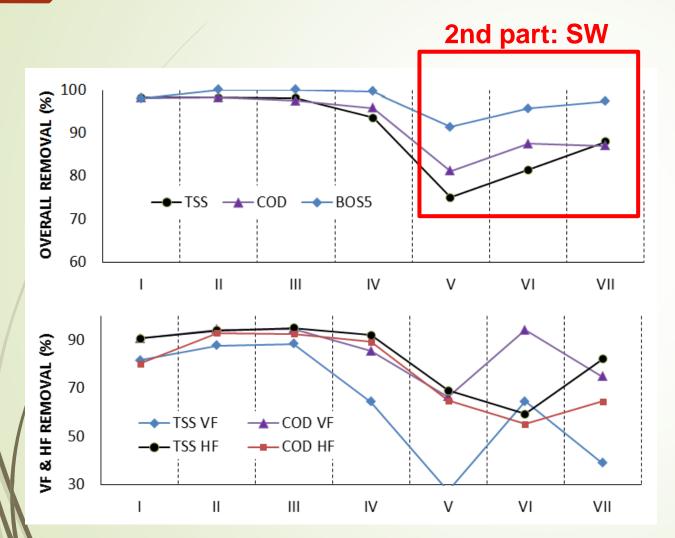

Operational characteristics

					2nd par	t: MW	
PERIOD	I			IV	V	VI	VII
(days)	(0-49)	(50-75)	(76-104)	(105-125)	(126-153)	(154-165)	(166-180)
Wastewater	SW	SW	SW	SW	MW	MW	MW
Bypass to HF (% Inf. VF)	0	26.0	39.7	38.6	34.4	18.1	30.3
Overall HLR (mm/d)	76.5	96.8	109.3	128.7	124.2	72.6	79.5
Overall SLR (g/m ² ·d)							
TSS	9.3	11.7	13.2	15.6	9.9	6.0	6.5
CØD	45.1	57.0	64.4	75.8	53.0	27.9	30.6
BOD ₅	19.4	24.5	27.6	32.6	28.9	16.0	17.5
TN	5.8	7.3	8.2	9.7	7.0	4.3	4.7
VF SLR (g/m ² ·d)							
TSS	14.2	14.3	14.6	17.3	11.4	7.8	7.7
COD	69.4	69.7	70.9	84.1	60.6	36.4	36.1
BOD ₅	29.8	29.9	30.4	36.1	33.1	20.8	20.7
TN	8.9	8.9	9.1	10.8	8.0	5.6	5.5
HF SLR (g/m ² ·d)							
TSS	4.8	8.0	13.7	24.2	22.7	7.5	12.6
COD	11.8	31.9	59.0	85.0	80.0	24.5	32.3
TN	13.7	13.8	19.2	22.0	14.1	12.6	11.3

2nd north MIM

Organic matter removal

R.

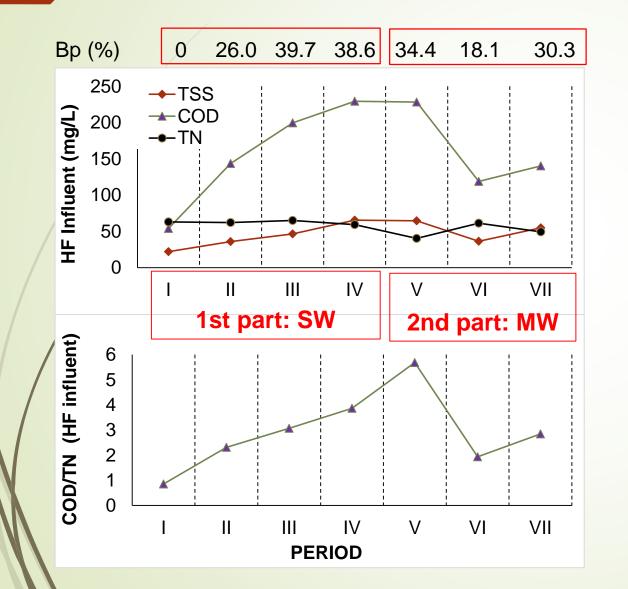


Organic matter removal efficiency was very high in the overall systemn: 94% -99% for TSS, COD and BOD5

The same occurred in the individual units, although the VF unit accused the increase in HLR during period IV

Organic matter removal

R.



Real MW:

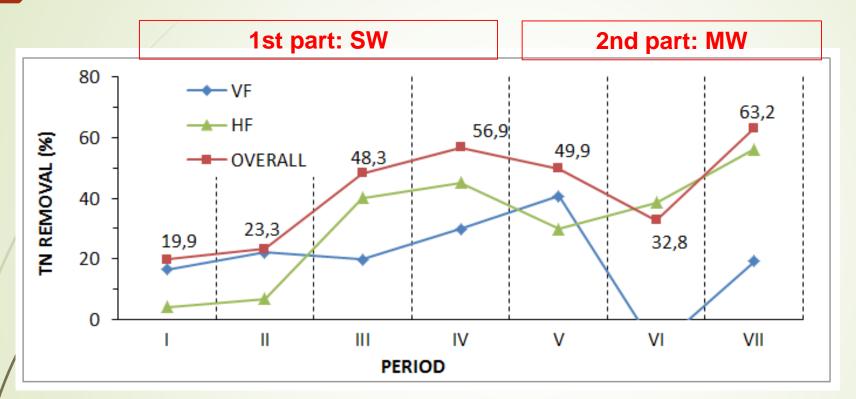
- Removal efficiency decreased and was partially recovered after the reduction in HLR and SLR
- Average removals (V-VII) were: 82% TSS, 85% COD and 95% BOD5

R.

Influent concentration to HF unit

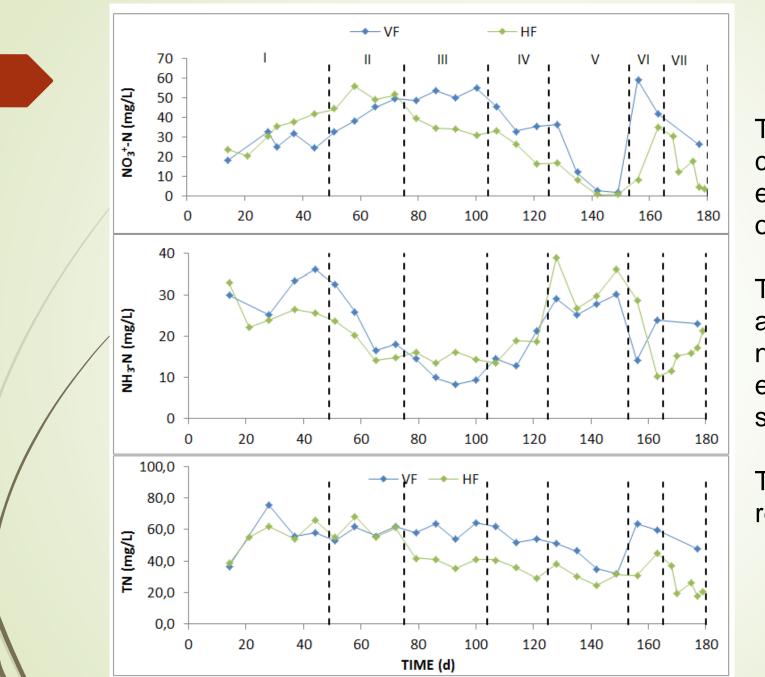
SW

Effect of bypass (from 0 to 40%) on COD and TN concentration influent to HF:


- constant TN concentration
- sharp increase in COD and TSS
- COD/TN ratio increase from 0.9 to 3.9

MW

The bypass has been reduced to 30% (period VII) and the COD/TN ratio decreased to 2.8 (VII)


Nitrogen conversion and TN removal

R.

TN removal clearly increased with Bp due to enhanced denitrification in the HF unit:

- ➢ Maximum TN removal with SW: 57% at 39% Bp
- Maximum TN removal with MW: 63% at 30% Bp and lower SLR

R.

The course of nitrogen forms can explain the treatment efficiency and the selection of operational conditions made.

The criterion: Predominant accumulation of one of the nitrogen forms in the final effluent indicates unbalanced situation (HLR, SLR, %Bp)

The objective: optimum TN removal

Clogging risk and green house gas emssions

- VF flow profiles and drainage flow from HF indicate absence of clogging
- Overall greenhouse gas emissions were 30 (CO₂), 0.11 (N₂O) and 0.41 (CH₄) g/m²·d
- N₂O and CH₄ emissions were in the range of mean emission factors reported in literature, but higher than those of the Bp(VF+HF)_{1:2} system receiving lower SLR

Greenhouse gas emission rates

	VF			HF			Overall		
	CO ₂	N ₂ O	CH_4	CO ₂	N ₂ O	CH_4	CO ₂	N ₂ O	CH_4
Emission rate (mg/m ² ·d)	38578	160	164	14669	0	873	30021	109	414
Emission factor (%) ^a	108.5	1.0	1.3	38.3	0	6.3	94.2	0.7	3.6

Effect of HF/VF area ratio: Comparing systems Bp(VF+HF)_{1:2} and Bp(VF+HF)_{2:1}

SW:

IR-

Similar COD/TN of 3.1-3.2 but at different bypass ratios of 50% and 40%

Bp(VF+HF)_{2:1} reached 2 to 3 times higher SLR and SRR (COD and TN)

System	Bp(VF+HF) _{1:2}	Bp(VF+HF) _{2:1}	Bp(VF+HF) _{2:1}
Wastewater	SW	SW	MW
HF/VF area ratio	2.0	0.5	0.5
Bypass to HF (% Inf. VF)	50	39.7	30.3
Overall HLR (mm/d)	40.4	109.3	79.5
Overall SLR (g COD/m ² ·d)	23.8	64.4	30.6
Overall SLR (g TN /m ^{2.} d)	3.1	8.2	4.7
COD/TN Influent HF	3.2	3.1	2.8
Overall TN removal (%)	50.0	48.3	63.2
Overall SRR (g TN/m ² ·d)	1.6	4.0	3.0
Reference	Torrijos et al., 2015	This study	This study

MW:

good performance of the Bp(VF+HF)_{2:1} system at middle SLR

MATERIAL AND METHODS

C.

CONCLUSIONS

 A lower HF/VF area rate requires a lower bypass ratio in order to obtain reducing conditions in the second HF unit and allows higher SLR

Synthetic wastewater:

- Bp(VF+HF)_{2:1} system: 48-57% TN removal at 40% Bp, 33 g BOD₅/m²·d and 10 g TN/m²·d of SLR
- Bp(VF+HF)_{1:2} system: 50% TN removal at 50% Bp, 10 g BOD₅/m²·d and 3 g TN/m²·d of SLR

Actual municipal wastewater:

- Bp(VF+HF)_{2:1} system: 63% TN removal at 30% Bp, 18 g BOD₅/m²·d and 4.7 g TN/m²·d of SLR
- Maximum TN removal efficiency limited to 50-60% in the Bp(VF+HF) irrespective of the HF/VF area rate, SLR or wastewater type, indicating a limitation of the bypass strategy in order to achieved complete TN removal in this type of CW.

THANK FOR YOUR ATENTION

13th IWA Specialized Conference on Small Water and Wastewater Systems & 5th IWA Specialized Conference on Resources-Oriented Sanitation Athens, Greece, 14-17 Setember 2016