

13th IWA Specialized Conference on Small Water and Wastewater Systems

5th IWA Specialized Conference on Resources-Oriented Sanitation

DECENTRALIZED SANITATION SYSTEMS FOR THE SOUTHERN ECUADORIAN ANDES, ASSESSMENT AND CHALLENGES

Andres Alvarado Martinez

Departamento de Recursos Hídricos y Ciencias Ambientales *iDRHICA* FACULTAD DE INGENIERÍA UNIVERSIDAD DE CUENCA

- Introduction
 - The southern Andes of Ecuador
 - climate / morphology / domestic sewage
- Long-term sanitation objectives
- Methodology
 - A review of existing technologies
 - Organic matter removal
 - Pathogen removal
 - Sustainability
 - Assessment of existing systems
 - Organization capacity
- Conclusions / Perspectives

Southern Andes of Ecuador

Rural and sub-urban population: +/- 700 000 20% still missing improved sanitation; wastewater treatment < 5%

Southern Andes of Ecuador

Climate-morphological conditions

- 1500 3200 m.asl
- Temperatures 12 24 °C
- No scarcity of fresh water resources
- Rainfall 660 3400 mm/year
- Mountain rivers... high self-purification capacity

Domestic wastewater

- Highly diluted: drinking water 150-300 l/hab-day
- Low organic concentration: 100-250 mgBOD/I
- Pathogen concentration: 6-9 log units
- Infiltration and illicit connections
- High concentration of particulate runoff material

Southern Andes of Ecuador

- Sanitation long-term objectives
 - Efficiency and sustainability: Decentralized systems
 - However, efficiency means prioritizing
 - 1. Resourceatecoveryogen removal)
 - 2. **Public health (pathogencrem**oval)
 - **3.** Environment (organic matter and nutrients)
 - 4. **Construction and O**&M cost

The review: potential technologies

- Methodology:
 - Review of good technological examples at comparable climate conditions
 - Interview to managers and users of DWWT systems
 - Assessment of many decentralized system constructed in the last two decades
 - Assessment of Community capacities and willingness for the operation and maintenance of the systems

introduction			objective met		hods	results	conclusions	
	Place of study	Weather	Populati on	Objective / Methodology	Applied Technology	Water Type	Results /Analysis	
(Elmitwalli et al., 2003)	Netherlands	T: 13 °C (Winter), 18 °C (Summer)	1000- 20000	Feasibility of anaerobic wastewater treatment at low temperatures and low costs of investment and maintenance.	Two stage Hybrid Anaerobic Septic Tank	Domestic Wastewater.	87% reduction of COD at low temperatures. Sludge cleaning after one year.	
(Parkinson, 2003)	Peri-urban areas in low-income dev. countries.	Variable.	Varies	Wastewater treatment at low cost and effluent reuse	Anaerobic Treatment, Reactor with baffles and stabilization ponds.	Domestic Wastewater.	Anaerobic treatment: no external energy, small pathogen reduction. Two chambers baffled reactor: similar to UASB. Stabilization ponds: pathogen removal and effluent reuse.	
(Langergrab er and Muellegger, 2005)	Peri-urban in: Uganda, Germany, Denmark y Finland.	Variable.	No Data	Introduction to EcoSan principles and concepts including re-use aspects	Dry toilets and reuse of nutrients.	Human wastes.	EcoSan systems minimize hygienic risks and protect the environment; help the return of nutrients to the soil, and conserve valuable water resources.	
(Kujawa- Roeleveld and Zeeman, 2006)	Peri-urban areas in low-income DC	Temperature: 20°C y 13 °C.	Varies	Gray and black water are analyzed, comparing their composition with their location, lifestyle, customs and facilities	At 20 °C: A UASB, followed by septic tank. 13 °C: Anaerobic filter (AF) followed by a AH	^a Gray, black and rainwater.	At high Temp, COD is removed up to 80-90%. At low Temp COD is removed up to 71%. By separating the gray and black waters, 80-95% of nutrients can be recovered	
(Abegglen and Siegrist, 2006)	Solothurn (Switzerland)	Temperature: I6°C,.	250,000	In-situ domestic wastewater treatment, effluent reuse, low drinking water demand.	Membrane reactor: primary clarifier and activated sludge wi a submerged membrane plate Both with aeration		Nitrogen and Phosphorus are removed at 90%. Drying is good at low Temp (10°C), Total Organic Carbon (TOC) and COD removal from 90 and 95% respectively.	
(Mendez et al., 2008)	Orizaba, Veracruz (Mexico)	Temp max 25; min 16°C; rainfall 2238 mm/y; 1232 m asl	120,995	After a primary and advanced treatment, the best conditions for pathogen removal and reuse	Hom Kinetic Model for fecal coliform (FC) and Salmonella inactivation by Ammonia dose	Municipal and agroindustrial wastewater.	At higher Temp, less ammonia required for microorganisms inactivation.	
(Fach and Fuchs, 2010)	Gunung Kidul (Indonesia)	Temperature: between 21 °C and 32 °C	Varies	Potential of reuse of effluents and stabilized sludge from septic tanks	Anaerobic digestion in septic tanks and aerobic filtration. Domest Sludge dehydration, reuse as fertilizer. Wastewar		Sludge obtained from a septic tank and from solid wastes used as fertilizer. Effluent used for irrigation.	
(Rojas- Higuera et al., 2010)	Bogotá (Colombia)	Temp: 13 °C, Rainfall: 890 mm/y, 2600 m asl	36 km from Bogotá.	Treatment of sludge from oxidation ponds, and reuse in agriculture.	Chlorination and photo catalyt TiO_2 combined with high Temp		In 8 hours, chlorination does not eliminate coliforms and E. Coli completely. The heterogeneous photocatalysis with TiO ₂ remove pathogenic organisms in 30 minutes.	
(Nanninga et al., 2012)	Xochimilco (Mexico)	Temp 15 °C, rainfall 60 mm/y, 2240 m asl	415,000	Acceptance of people to decentralized technologies for recover and reuse water, nutrients and energy.	Ecosan toilets, toilets with filter and wetlands.	s Domestic WW, rainwater, waste, urine and feces.	Acceptance of people is essential for implementation of decentralized technologies. Recovery of nutrients, water and energy with low cost and protecting the environment.	
(Ghaitidak and Yadav, 2013)	Perth (Aus), Calicut (Ind), Dakar (Sen), Amman (Jor), South Africa, Sana-a (Yem).	Different conditions	Varies	Advantages of treating gray water separated with a focus on reuse.	Anaerobic treatment, Wetland and Filtration.	s Gray water.	The best method to ensure reuse is an anaerobic system followed by aerobic system and post disinfection.	
(Silva-Leal et al., 2013)	Cañaveralejo, Cali (Colombia)	Temp: 23°C, rainfall 908 mm/y, 1018 m asl	2,060,000	Elimination of pathogens in treated and drying biosolids to get class A qualification.	Thermal drying and alkaline treatment.	Domestic Wastewater.	Temp for thermal drying are 60, 65, 70 and 75°C , 8 to 16 hours. For alkaline treatment doses of quicklime to up 9% for 5 days, gets N reduction. Treatments qualify as class A.	

introduction			objective	metho	methods		ts conclusions	
Reference	Place of study	Population	Current infrastructure	Social aspects	Actio	ns / method	Results	
(Sundaravadive I and Vigneswaran, 2001)	India: Andipatti, Bodinayakkanur, Cumbum and Theni.		Dry latrines. WW collected in open channels; effluent used in irrigation.	The communities receive little attention from authorities.	Surveys and registration of diseases, water analysis.		With low investment, removal of 70-80% of BOD, and up to 2 log units of FC. O&M acceptable for authorities	
(Parkinson, 2003)	Peri-urban, low- income areas in developing countries	Different range	Not access to safe drinking water and sanitation facilities.	WW in direct contact to people, No interest for environment and health problems.	Coordination between government, privates and community, identifying local skills and creating knowledge		Information and knowledge created in the residents for treating their wastewater. Responsible suppliers and technical support were considered in centralized areas.	
(Heymans et al., 2004)	South Asian countries: Bangladesh and Vietnam.	No Data	A small percentage of homes have latrines and septic tanks.	deficient environment and public health knowledge in communities, disconnection to government	Community participation guarantees an appropriate management with support of local authorities.		An agreement between the community and governments, has been achieved for a long term management of the DWWT	
(N. Viet Anh et al., 2004)	Hanoi, Vietnam I,7 millions		65% have sewage connection. Black waters are treated in STs and discharged in a river.	The population density is rapidly growing, due to industrialization. High pressure on natural resources	Preparation of system managers for the O&M. Citizen participation without exclusion.		The government is compromised to support and follow up the actions. The community pays a fee for wastewater treatment.	
(Beausejour and Nguyen, 2007)	Kim Chung- Lai 4000 Xa, Vietnam		In Vietnam 55% of inhabitants had access to latrines in 2006	Rural sector faces urgent sanitation needs, demanding flexible solutions adapted to their local conditions.	Management of solid wastes (from 2003) and Management of liquid wastes (from 2005).		Better hygiene practices at homes. Trained people from the community involved in decision making and system maintenance.	
(Kamal et al., 2008)	Urban and Peri- urban areas of south and southeast Asia		Big cities have poor treatment. Small towns without any collection or treatment.	Lack of coordination between different levels of government with rural communities.	Coordination between the central and local government. The reuse as the key objective with community participation		Coordination between all water companies in each country. Selection of simple and cheap technologies.	
(Kema et al., 2012)	Mtwara rural district, Tanzania	203000 people 375 homes	Scarce or no access to ventilated or traditional latrines.	Only 40 out of 118 villages have access to sanitation. Low quality of life	socioeconom	ollect demographic, nic, hygiene practices and status of latrines in use.	Less than 50% of the members in each household use latrines. There is lack of education about the importance of personal hygiene.	
(Meleg, 2012)	Bahía, Ceará, Piauí, Brazil	No Data	There are access to latrines and primary treatment to small scale.	Low-income communities accept help from private entities or governments.	systems, cor of O&M	R: the income of big npensates the costs of small systems, lso overall support	There was a great acceptation of the SISAR model by inhabitants, and the support of external organisms.	
(Fam et al., 2014)	Melbourne, 3,6 millions Australia		Separate sewerage systems (sanitary and storm). Artificial wetlands systems.	Melbourne inhabitants are well aware of planning and collaboration for a good quality of life.	Educational campaigns for a price scheme to compensate the water conservation in homes and industries		Training to local leaders in workshops for decentralized wastewater treatment and reuse of effluents.	
(Van Dijk et al., 2014)	Dar es Salaam, Tanzania and Kampala, Uganda Dar es Salaam (5 millions), Kampala (1,2 millions)		Shared toilets and latrines in poor condition. Open defecation.	Unhealthy environments and high rate of diseases. No investment in sanitation from authorities	Qualitative and quantitative surveys about life style and financial organizations in each neighborhood.		35% willing to improve sanitation, 40% with their self-work and 25% will not contribute by their economic condition.	
(Kouamé et al., 2014)	Côte d'Ivoire. (492 homes)		Dry latrines, STs. No sludge disposal. Effluent reuse in agriculture without any treatment.	High levels of diarrhea and malaria, directly associated with the lack of sanitation.	workshop	iplinary research, s and mapping. An che risk factors and health.	A network was created for sharing information between interesting parts, authorities and the local community, in order to improve the quality of life.	

 Assessment of existing decentralized system constructed in the last two decades

results

Assessment of existing decentralized system constructed in the last two decades

- More than a half of the systems are not • receiving O&M for years
- 1/3 are collapsed and abandoned
- Some few are in operation \bullet
- No one is accomplishing the ultimate \bullet objective: pathogen reduction

introduction objective methods results conclusions

- **The main goal:** disinfection
- **The challenge:** to get an adequate effluent for applying any disinfection technology (chlorination, UV radiation, photo catalysis with TiO₂)
- For highlands > 2400 m.asl
 - 1. Two stage: Septic Tank + Anaerobic filter. Hybrid ST (Sharma et. al. 2014) + D

3. Two stage: Septic Tank + Constructed wetland

For lowlands

2.

1. Two stage: UASB + Anaerobic filter + D

3. Two stage: Septic Tank + Constructed wetland

Organization capacities at users level

- The need of **users awareness** about the **benefits** of domestic effluent treatment to preserve the public health and the environment.
- The community organizational capacities could be noticeably improved with the involvement of community leaders in the O&M responsibilities.
- The public institutions should aim to decentralize and reinforce the administrative and organizational capacities of the communities
- In Ecuador, it is still necessary to reinforce scientific research towards decentralized WWT technologies and to strengthen the capabilities of the engineers in the whole process of technology selection, design, and operation and maintenance of the decentralized DWWT systems..

- Public Health as the main objective in the sanitation program at Ecuadorian Andes
- Disinfection is feasible when the effluent presents adequate characteristics
- The temperature is a determinant factor when considering the technical feasibility of the systems
- The anaerobic systems are a feasible alternative, particularly septic tank units or UASB reactors.
- Septic tanks followed by an anaerobic filter or constructed wetlands are good alternatives for both BOD and pathogen reduction.
- These technological alternatives require, however, a validation by pilot experiences
- The level of success of the decentralized system is directly proportional to the level of community involvement.

Thank you for your kind attention

Acknowledgements:

Departamento de Recursos Hídricos y Ciencias Ambientales *iDRHICA* FACULTAD DE INGENIERÍA UNIVERSIDAD DE CUENCA

