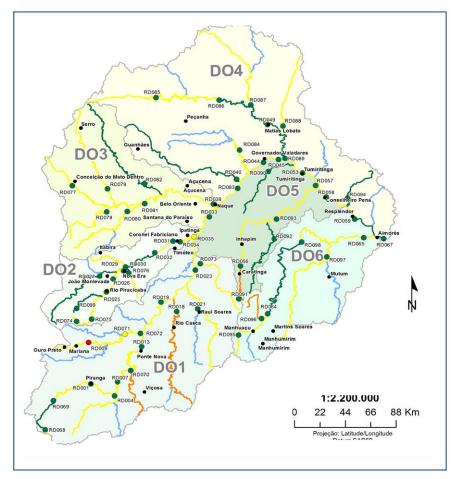

13th IWA Specialized Conference on Small Water and Wastewater Systems & 5th IWA Specialized Conference on Resources-Oriented Sanitation


Microbiological safety of a small water distribution system: is *E. coli* a suitable indicator during a severe drought?

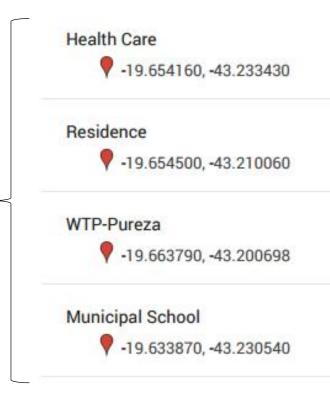
Authors

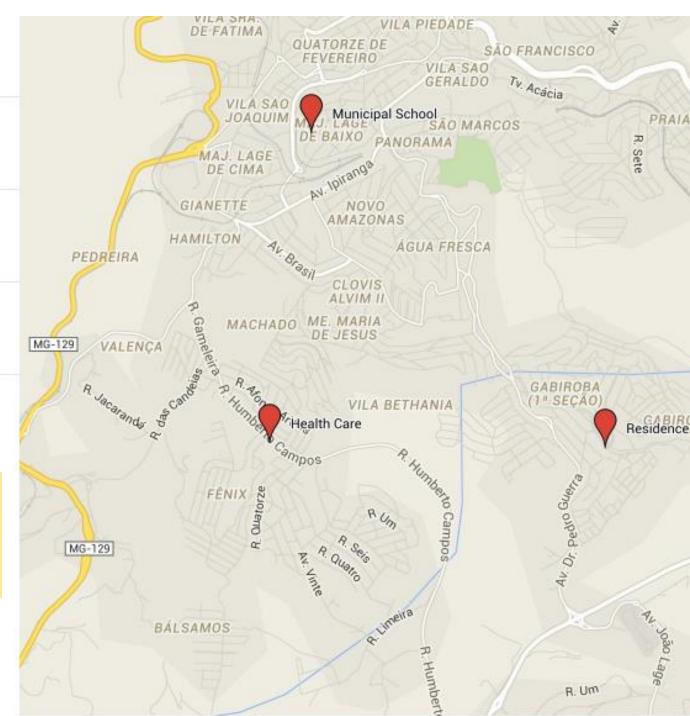
Ana Maria M. Batista - Federal University of Minas Gerais Graziella P. P. Garcia - Federal University of Minas Gerais Paola Meynet - Newcastlle University Juliana Calabria de Araújo - Federal University of Minas Gerais Sandro A. V. Costa - Environmental Chemistry Consultant César R. Mota Filho - Federal University of Minas Gerais David Werner – Newcastlle University Russell J. Davenport -Newcastlle University

INTRODUCTION

Doce River Valley

Doce River

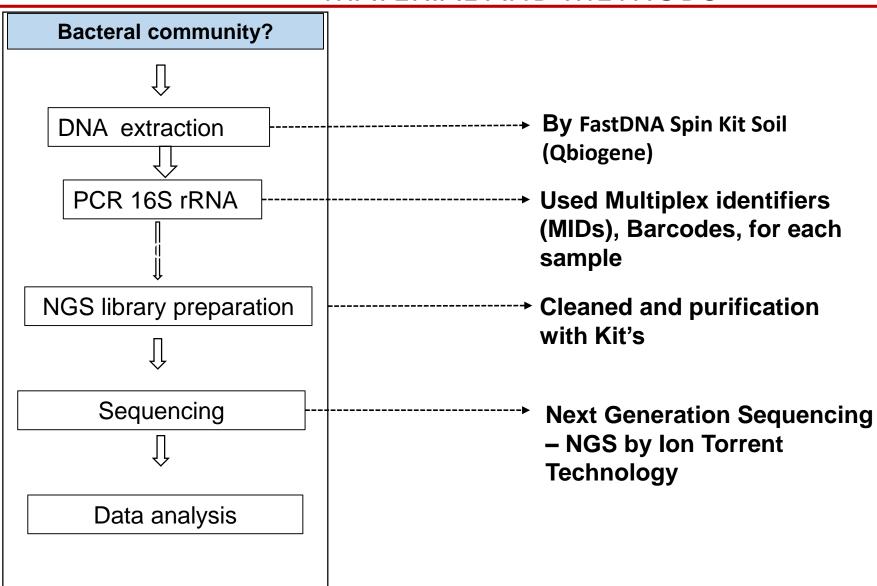

INTRODUCTION


- ✓ The Drinking Water Treatment System surveyed in this study captures water from one stream and one River, inside the basin of the River Doce, where environmental degradation has been intensified during the last years due to unregulated urban development.
- ✓ It is the largest plant in the municipality and has a Conventional treatment Technology. Its production reaches 180 L/s and serves 120.000 people.
- ✓ The Water Treatment Works supplies about 55% of the water demand of the city
- ✓ During the recent drought, it had to pump approximately 25% of its flowrate from a river deteriorated by unregulated urban development.

STUDY AREA

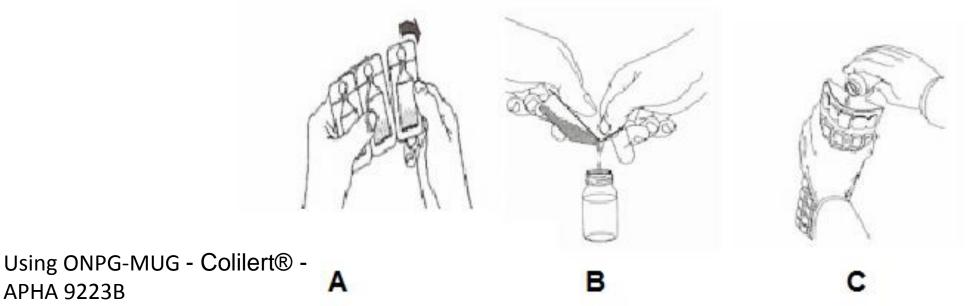
In total 18 samples

Samples were collected in 3 points of the distribution system from July to December 2015 in

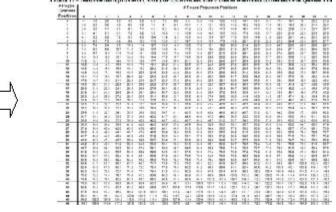

MATERIAL AND METHODS

Point	Type of water	Sampling points	Filtered volume (July to Octorber)	Filtered volume (November and December)
1		Municipal School (point with the lowest altitude in the DWS)	2 L	4 L
2	Treated water (DWS)	Health Center (intermediate point)	2 L	4 L
3		Residence (farthest point from the water treatment works)	2 L	4 L

A sample of 2 L was collected at point each month and filtered with a filter 0.22 um porosity (Acetate cellulose) for DNA extraction. Flasks of 100 mL was used to *E. coli* analysis. The water temperature, Free chlorine and turbidity were obtained *in-situ*.


MATERIAL AND METHODS

MATERIAL AND METHODS E. coli and Coliforms analysis



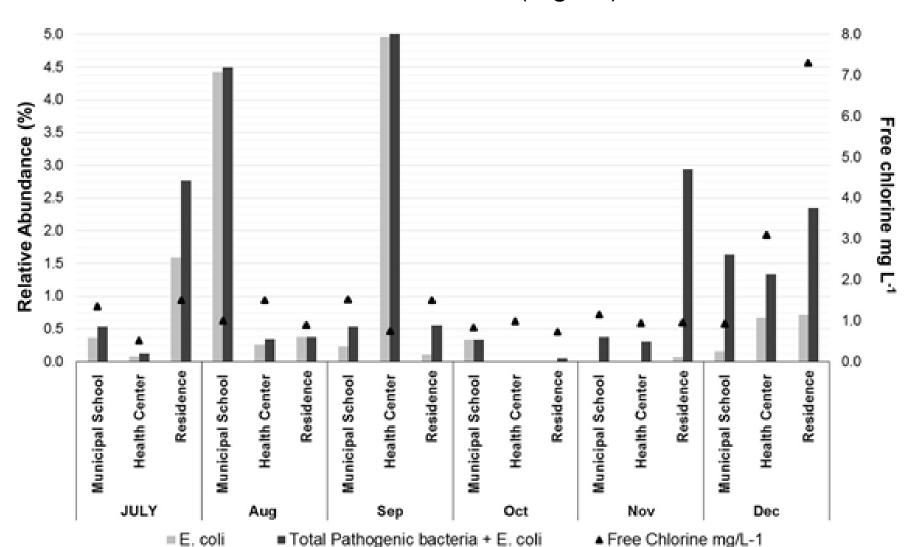
Read and Interpretation results

APHA 9223B

RESULTS

• In total, NGS generated 131.941 OTUS's, based on Silva's ribosomal RNA gene database.

• The enzymatic method did not detect *E. coli* or coliforms in any of the samples throughout the study.


• Spearman correlation between *E. coli* and total pathogenic bacteria was not significant (0.05%).

RESULTS

Relative abundance (%) of *E. coli* and pathogenic bacteria determined by NGS and free residual chlorine concentration (mg L⁻¹).

NGS detected *E. coli* and several pathogenic bacteria in all but two samples (Fig), at relative abundance as high as 5% of the total community for one point.

Samples that had the highest free chlorine concentrations also showed high relative abundance of pathogenic bacteria

Pathogenic bacteria detected by NGS on samples from the water distribution network.

Pathogenic Species		Points/ month		onth	Disease	Reference
		MS	HC	R		
1. xyl	Achromobacter osoxidans	JD	JAN	JD	Infection or colonisation in Cystic Fibrosis patients.	De Baets et al. 2007
2.	Acinetobacter calcoaceticus	S		JD	Nosocomial infection	Patterson, et al. 1991; Touchon et al. 2014
3.	Acinetobacter ursingii		N	JD	Bacteremia	Loubinoux <i>et al.</i> . 2003
4.	Brucella spp	JSD	ON	JOND	Brucellosis, Osteoarthritis, Endocarditis and several neurological disorders.	Saeb <i>et al.</i> 2014
5.	Chromobacterium haemolyticum		JND	SN	Bacteremia	Okada et al. 2013
6.	Corynebacterium aurimucosum	S			Urinary Tract Infection	Lo et al. 2015
7.	Corynebacterium durum			N	Respiratory Tract Infection	Riegel et al. 1997
8.	Corynebacterium freneyi			JN	Bacteremia	Auzias et al. 2003

A total of 19 species of bacterial pathogens were detected in this study. Some of these bacteria are opportunistic and can cause disease in patients with debilitated immune systems (Pagani et al.. 2003; Murphy 2012).

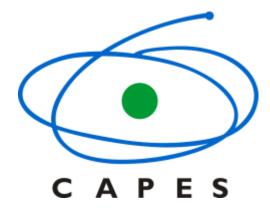
RESULTS

Relative abundance (%) of *E. coli* and pathogenic bacteria determined by NGS and free residual chlorine concentration (mg L⁻¹).

Pathogenic Species		Points/ month		Disease	Reference
	\mathbf{N}	IS H	C R		
9. Coxiella	SN	AND	JSD	Q fever	Siciliano et al. 2008
10. Dygonomonas sp	ND			Infection gall bladder	Hironaga et al. 2008
11. Klebsiella	A			Nosocomial Infections	Podschun et al. 2001
12. Legionella nagasakiensis	J			Pneumonia	Yang et al. 2012
13. Massilia timonae	S	N		General Infections in Low Immunity patients	Lindquist et al. 2003
14. Propionibacterium acnes	JA		JD	Androgen stimulated seborrhoea, hyperkeratinisation and obstruction of the follicular epithelium and inflammation.	Bathia et al. 2004
15. Psychrobacter immobilis			D	Ocular infection, Meningitis	Gini <i>et al.</i> 1990, Lloyd-Puryear <i>et al.</i> 1990
16. Ralstonia pickettii	A		J	Nosocomial Infections	Ryan et al. 2006
17. Rhodococcus erythropolis			D	Septicaemia	Park <i>et al</i> . 2011
18. Shewanella putrefaciens	S	S		Hepatobiliary disease, peripheral vascular disease, with chronic leg ulcer	Sharma & Kalawat 2010
19. Stenotrophomonas maltophilia			JN	Nosocomial Infections	Brooke 2012

However, the method used to determine the abundance of pathogenic bacteria does not indicate whether the pathogenic bacteria detected were alive or had been inactivated by free chlorine.

CONCLUSIONS


- ✓ The current work shows that *E. coli* was a fairly good indicator organism for pathogenic bacteria, based on next generation sequencing. However, it gave false positive or negative results as an indicator organism in 8 occasions, out of 18 samples.
- ✓ The presence of a diverse community of pathogenic bacteria in the water distribution network investigated suggests that the system is in dire need of operational changes to improve water quality.
- ✓ The current study highlights the importance of protecting catchment areas that are used for water supply in order to minimise risks to public health due to waterborne diseases.
- ✓ The current study also highlights the importance of effective maintenance of water distribution systems to prevent biofilm formation and accumulation of other particles that allow bacterial adhesion.

ACKNOWLEDGMENTS

EUXαριστώ Obrigada Thank you