

13th IWA

Specialized Conference on Small Water and Wastewater Systems

5th IWA

Specialized Conference on Resources-Oriented Sanitation

ASSESSMENT OF DECENTRALIZED WASTEWATER TREATMENT SYSTEMS IN THE RURAL AREA OF CUENCA, ECUADOR.

Andres Alvarado Martinez

Departamento de Recursos Hídricos y Ciencias Ambientales *iDRHICA* FACULTAD DE INGENIERÍA UNIVERSIDAD DE CUENCA

- Introduction
 - Cuenca and the rural systems
 - Long term objectives
- Problem Statement / Objectives
- Methods
 - Information analysis
 - Characterization
- Results / discussion
- Conclusions / perspectives

introduction objective methods results conclusions

CUENCA – ECUADOR

0.5 million inhabitants, third largest city of Ecuador Ecuadorian leader in sanitation services: 95% sewerage; 90% wastewater treatment (WSP)

Ucubamba WSP, The biggest WWTP in ECUADOR

- DBO=85%, sólidos=95%, Patógenos= log7 log4
- Remoción en línea de lodos (2013)

The Decentralized Systems

- 32 systems. Constructed in the last 20 years. Located in rural areas
- Serving around 100 000 inhabitants

The Decentralized Systems

- Problem statements:
 - The systems are progressively abandoned
 - There were inconsistencies in the efficiencies reported
 - A preliminary inspection showed collapsed systems and very low biological activity in others
- Objective: a real assessment of the systems as baseline for taking decisions about the sanitation of the rapid urbanization in the surroundings of Cuenca
- Methods: analysis of the information supplied by the agency, inspections and characterization

objective

Analysis of the information of the agency: Systems deteriorated or with very low biological activity reported very good efficiencies...

efficiency

	Access Roads	Served Area ha	Altitude T m -a.s.l °C	Т	0014	Preliminary Treatment			Primary Treatment			Secondary Treatment			CL L	Final.
N°					O&M Plan	By-Pass	Screen	Grit Cham ber	Туре	Chamber	L;W;D [m]	Type- number	Filter Media	L;W;D [m]	Sludge drying bed	Final Disposal
3	✓	72.2	30	22	✓	OS	✓		ST	2	N/D	FWSW-2		N/D	V	Stream
4	√	N/D	30	22	√	OS	✓	√	ST	2	N/D	FWSW-2		N/D	V	TL
5	✓	55.8	30	22	1	OS	✓		ST	2	N/D	FWSW-2		N/D	√	TL
6	V	417.5	30	22	✓	OS	✓		ST	2	N/D	FWSW-I		N/D	1	Infil
7	V	43.5	30	22	1	OS	✓		ST	2	N/D	HF/AF	Gravel		1	TL
8	√	N/D	30	22	✓	OS	✓		ST	2	N/D	FWSW-I		N/D	V	Stream
9		N/D	1700	18	✓		✓		ST	2	N/D	VF/AF	Gravel			Stream
10		N/D	1700	18	√		N/D		ST		N/D	HF/AF	N/D			N/D
11		75.2	1700	18	1		N/D		ST		N/D	HF/AF	N/D			N/D
12		75.2	2440	17		OS			ST	2	N/D					Stream
13		54.3	2440	17	√		N/D		ST		N/D	AF/	N/D			N/D
14	√	226.5	2500	П	✓		✓	√	ST	2	11,9;3,4;2,5	FWSW-2		34,5;20,2;1,8	1	Stream
15	√	49.3	2500	П		OS	✓	√	ST	2	N/D	VF/AF	Brick		I	Stream
16	V	40.3	2500	11			✓		ST	2	N/D	VF/AF	Gravel		1	Stream
17	V	150.8	2520	15	✓	OS	✓		UASB	3	N/D	HF/AF	Gravel		√	Stream
18		N/D	2550	17	✓	OS	✓		ST	3	7,3;3,0;2,9	FWSW-I		31,7;18,7;2,5	V	Stream
19	✓	129.4	2582	14	√		✓		ST	2	N/D	VF/AF	Brick			Stream
20	V	41.5	2582	14	√	OS	✓		ST	2	N/D	VF/AF	Brick		1	Stream
21		47.9	2600	17	√			√	ST	2	N/D	VF/AF	Brick			Stream
22	V	25.4	2600	14	1	OS			ST	2	9,4;3,1;1,5	VF/AF	Brick		1	Stream
23		24.4	2600	17		OS	✓		ST	2	9,4;3,0;1,5	VF/AF	Gravel			Stream
24	V	71.0	2600	17	√	OS	✓		ST	2	11,1;4,3;2,7	VF/AF	Brick	2,5 Di 3,3 D	/	Stream
25	V	32.9	2600	17	√	OS	✓	√	ST	2	9,4;3,1;1,5	VF/AF	Brick		√	Stream
26		8.6	2600	17					ST	2	N/D	HF/AF	Gravel			Stream
27	V	11.1	2792	15					ST	2	7,6;2,9;2,9	HF/AF	Gravel	7,6;2,9;2,9		Stream
28	1	103.6	2792	15			1		ST	2	N/D	VF/AF	Gravel		V	Stream
29		38.4	2820	17	√		N/D		ST	4	4,8;4,7;1,5					Stream
30	√	605.I	2852	П	1	OS	√		ST	2	11,0;3,9;2,8	FWSW-2		N/D	1	N/D
31	V	76.5	2900	12	√	OS	✓		ST	4	N/D	VF/AF	Brick		/	Stream
32	✓	55.8	3500	5	1				ST	ı	N/D	HF/AF	Gravel		V	Stream

		Discharge	ВС	DD ₅	C	OD	Т	KN	ТР)	Т	SS	Т	S	рН
N°	Date	m³/day	mg / L -										-		
			Inf	Rem	Inf	Rem	Inf	Rem	Inf	Rem	Inf	Rem	Inf	Rem	Inf
1	Feb, 2009		155	60%	347	47%	13.5	N/D	5.7	N/D	222	N/D	821	N/D	7.6
2	Sep, 2009		58	81%	24	-11%	1	V/D	N/E)	23	35%	154	12%	6.7
14	June, 2014		30	60%	174	59%	6.0	-25%	1.4	22%	74	88%	268	20%	6.7
	Feb, 2016		170	90%	603	85%	12.5	52%	3.2	67%	496	98%	776	72%	6.8
15	Feb, 2016		420	89%	1744	95%	83	54%	4.6	13%	1636	98%	1984	79%	6.7
17	Dec, 2015		100	60%	279	61%	53	41%	3.9	23%	156	85%	518	37%	7.2
	May, 2016	126	47	79%	218	64%	23	35%	1.8	16%	114	95%	506	16%	7.0
18	June, 2014		33	70%	149	77%	3	32%	1.5	64%	53	45%	162	44%	7.0
22	2015	20	49	67%	113	53%	1	V/D	3.3	48%	21	48%	169	8%	
	Apr, 2016		245	90%	977	97%	44	49%	3.4	28%	1550	99%	1842	87%	6.7
23	Oct, 2015	33	365	86%	839	70%	134	14%	7.5	0.2	436	95%	1134	47%	7.3
	Feb, 2016		170	48%	413	15%	51	-67%	4.4	-0.8	26	-177%	557	-2%	7.6
24	June, 2014		580	96%	2038	94%	229	98%	N/E)	229	91%	1236	69%	9.2
25	Dec, 2015	20	265	71%	684	62%	122	23%	11.9	23%	161	70%	815	37%	7.4
	May, 2016		375	86%	818	77%	74	34%	7.0	41%	210	86%	930	46%	7.3
27	Oct, 2015		223	92%	440	85%	53	72%	3.1	58%	72	93%	593	65%	7.1
	Mar, 2016		58	60%	142	68%	26	5%	3.3	34%	69	88%	298	24%	6.8
28	Jan, 2009		10	-150%	32	-128%	1.3	-122%	N/I)	43	23%	283	-46%	7.0
	Feb, 2015		46	59%	147	66%	26	-5%	1.7	-0.1	62	81%	344	19%	7.1
29	2015	24	63	-27%	142	-29%			3.9	15%	62	-85%	60 I	-36%	
30	Sep, 2010		133	81%	313	70%	1	V/D	7.4	25%	95	80%	407	-42%	7.3
	May, 2016		225	76%	841	70%	21.4	56%	18.9	92%	840	73%	1376	56%	6.3
31	Mar, 2016		620	95%	2488	94%	238	77%	22.4	75%	2412	99%	2742	86%	6.7
32											62	-85%			

introduction	objective	methods	results	conclusions
--------------	-----------	---------	---------	-------------

Technology	# of systems	Removal min; mean; max	recurrent problems observed
ST + HF/AF	7	COD: 61; 75; 85% (2); TC: <0; <1; 2 log (2)	Clogging of ST and AFs
ST + VF/AF	12	COD: -118; 54; 97% (7); TC: <0; <1; 5 log (7)	Clogging of ST and AFs; organic overload;
ST + FWSW	8	COD:59; 73; 85% (3); TC: <0; <1; 1 log (3)	Clogging of ST; Clogging of ST; short circuiting in FWSW
ST + FWSW + Infil	1	-	-
UASB + HF/AF	1	COD: 62% (1); TC: <1 log (1)	Organic overload; clogging of AFs
Only ST	2	COD: -28% (1); TC: <1 log (1)	Clogging of ST

COD: Chemical Oxygen demand; TC: Total coliforms; (N) Number of systems characterised; ST: Septic Tank; AF: Anaerobic Filter; HF: Horizontal Flow; VF: Vertical Flow; FWSW: Free Water Surface Wetland; Infil: Soil Infiltration; UASB: Upflow anaerobic sludge blanket; OUT: Currently out of operation.

- Some systems present design and construction failures
- There is organic overload in many systems, mainly due to rapid increase of new connections to the sewerage network
- The preliminary structures are too small to retain the particulate material during rainfall events
- Very low and even null biological activity was observed in the majority of the systems in operation due to the erroneous starting up and maintenance of the systems
- Despite of some organic matter removal, the systems are not eliminating pathogens
- Many similarities between systems were found, which could suggest the application of design guidelines some decades ago
- Access roads and fences are urgently needed in many systems
- Perspectives: pilot scale systems will be implemented soon

Thank you for your kind attention

Acknowledgements:

Empresa Pública Municipal de Telecomunicaciones, Agua Potable, Alcantarillado y Saneamiento de Cuenca, Ecuador

