Optimization of combined UASB and continuous-flow SBR for sludge and gas production

Abdelsalam Elawwad, PhD
Cairo University, Egypt
UASB is an attractive alternative for small wastewater systems

Advantages: Low-cost, reliable, energy recovery, and low excess sludge production.

Disadvantages: Low organic removal efficiency, and removal of ammonia is difficult.

Secondary treatment of UASB’s effluent is required to meet the effluent quality standards.

A variety of post-treatment methods have been investigated in the literature.

Sequencing batch reactors (SBR) is the most promising solution among these systems.
SBR has a great interest for wastewater treatment

Advantages: Simple configuration, operational flexibility, high removal efficiency.

Disadvantages: Complicated control, equalization, two reactors, unequal organic and hydraulic loading, ...ect.

Some of these disadvantages can be overcome by using **continuous-flow Sequencing Batch Reactor (CSBR)**.

CSBR allows for continuous flow, less complicated control, simple configuration compared to a conventional SBR.

This is an advantage in small and decentralized wastewater systems.
Objectives

First,

- **Assess** the capability of using an integrated UASB-CSBR system to meet standard effluent quality in Egypt.
- **Optimize** this system with regard to Hydraulic Retention time (HRT) and Cycle time.

Second,

- Testing **waste sludge recycling** through the inlet of UASB.

Hypothesis:

- Use of UASB as an anaerobic pretreatment and a waste sludge digestion step.
- Decrease sludge production and increase biogas production.
Experimental Work

- Pilot plant at El-Berka WWTP, Cairo, Egypt.

Schematic diagram of the combined UASB and CSBR
Pilot plant at El-Berka WWTP, Cairo, Egypt.

Avg. Influent wastewater characteristics (all in mg/l, except for pH)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.5</td>
</tr>
<tr>
<td>COD</td>
<td>452</td>
</tr>
<tr>
<td>BOD</td>
<td>288</td>
</tr>
<tr>
<td>TSS</td>
<td>233</td>
</tr>
<tr>
<td>TKN</td>
<td>49</td>
</tr>
<tr>
<td>NH₄–N</td>
<td>28</td>
</tr>
</tbody>
</table>

- Raw wastewater is collected after the grit removal chamber
- Medium-strength wastewater from different rural areas.
- The storage tank is filled daily
Experimental Work

- Pilot plant at El-Berka WWTP, Cairo, Egypt.

- Volume = 50 liters
- Pretreatment
- HRT = 5.7 h
- 50%–60% organic removal
- **Biogas production:** water displacement method

60% Sludge blanket

UASB
Experimental Work

- Pilot plant at El-Berka WWTP, Cairo, Egypt.
 - **Volume** = 180 Liters
 - **15 %** pre-react
 - **40 %** Fill percentage
 - **Total cycle time** = 8 hrs.
 - controlled by a simple timer.
 - **DO** > 2 mg/l.
 - **MLSS** = 2 - 3 g/l
 - **SRT** = 8.6 days.
Experimental Work

Measured parameters:
- pH & Alk.
- COD & BOD$_5$
- TSS & VSS
- TKN & NH$_4$-N & NO$_3$-N & NO$_2$-N
- TP
- MLSS & SVI

* Sampling Points
Experimental Work

Photos for the combined UASB and CSBR
Waste Sludge Recycling

- UASB
- CSBR
- Waste Activated Sludge (WAS)
- Digested Sludge
- Raw Sewage

Experimental Work
Experimental Work

- Operating conditions throughout the study

<table>
<thead>
<tr>
<th>Parameters</th>
<th>without Sludge Recycling ~ 4 months</th>
<th>with Sludge Recycling ~ 4 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Avg.</td>
</tr>
<tr>
<td>Temp °C</td>
<td>19 - 28</td>
<td>22.7</td>
</tr>
<tr>
<td>Flow rate (l/d)</td>
<td>187 - 223</td>
<td>212</td>
</tr>
<tr>
<td>HRT in UASB (hr)</td>
<td>5.4-6.4</td>
<td>5.7</td>
</tr>
<tr>
<td>OLR (kg COD/m³/d)</td>
<td>1.3-2.9</td>
<td>2.1</td>
</tr>
<tr>
<td>DO in SBR</td>
<td>1.9 – 2.8</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Results

![COD Removal Efficiency % after UASB and SBR treatment](image)

Figure: COD Removal Efficiency % after UASB and SBR treatment
Results

- Overall **COD & TSS & ammonia** removal efficiencies were **85%**, **87%**, and **82%**, respectively.
- System was **stable** under variable organic and nitrogen loads.
- Removal efficiencies was comparable to literature.
- **No significant impact** on the treatment efficiency due to sludge recycling.
- Based on SS measurements, **50 - 60% reduction in sludge** can be achieved and about **35 % increase in biogas production** using sludge recycling approach.
- Sludge from UASB, **VSS/TSS ratio** was **0.6** in average which indicates well stabilized sludge.
Removal efficiencies about 85% for COD, TSS and ammonia can be achieved.

The proposed UASB-CSBR system could be a promising and cost-effective option for treating wastewater in small and decentralized wastewater systems.

The sludge recycling approach proposed in this study was helpful in reducing sludge production and increasing gas production with no significant impact on removal efficiency.

Further investigations on the effect of sludge recycling approach on sludge characteristics and dewaterability is required.

Longer period of investigation with detailed sampling program could be required.
Thank You

for your attention