

Understanding the role of *Tetrasphaera* in enhanced biological phosphorus removal

N. Rey, M. Badia, A. Guisasola, J. A. Baeza

Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona

13th IWA Specialized Conference on Small Water and Wastewater Systems 14-16 September, 2016 ATHENS, GREECE

 \blacktriangleright To gain knowledge on the new PAO genus *Tetrasphaera* by obtaining an enriched culture at lab-scale

>Two reactor configurations:

Sequencing batch reactor

>Continuous pilot plant system with A²/O configuration

Results: Batch experiments with the SBR sludge

PHA & Glycogen quantification

Results: Batch experiment with the A^2/O sludge

PHA & Glycogen quantification

Results: Comparison between configurations

Anaerobic PHA and glycogen production

mmol C/g VSS	SBR	A ² /O
COD consumed	3.436	8.87
PHA	0.692	0.621
Glycogen	0.476	0.066
Total=PHA + Glycogen	1.168	0.687
Carbon recovery ratio	0.34	0.08

Results: Literature comparison

Study		P _{rel} /C _{upt} (mol P/mol C)	PHA _{prod} /C _{upt} (mol C/mol C)	Glyc _{prod} /C _{upt} (mol C/mol C)
Enriched PAO	Kapagiannidis et al. (2013)	0.64	1.10	Consumption (-0.41)
	Tayà et al. (2013)	0.34	1.47	Consumption (-0.49)
This study	SBR	0.27	0.20	0.14
	A ² /O	0.21	0.07	0.01

Understanding the role of Tetrasphaera in EBPR – N. Rey et al.

SWWS 2016

Universitat Autònoma de Barcelona

Bresults: Bacterial community assessment

	PAOMix	GAOMix	Tetrasphaera
SBR	36 ± 1%	21 ± 1%	43 ± 9%
A²/O plant	26 ± 4%	1 ± 1%	66 ± 5%

Why do we detect the presence of PAO and GAO if we fed the reactor with glutamate for more than 400 days?

We are still operating the A²/O pilot plant with glutamate

We are working with this enriched-*tetrasphaera* culture in order to better understanding this new PAO genus

We will perform batch assays with different carbon sources and different electron acceptors

We are waiting for the pyrosequencing results

- Successful enrichment of sludge in *Tetrasphaera* using glutamate as sole carbon source was obtained for the first time.
- Better results and more stability was achieved with continuous pilot plant with respect to SBR.
- Fermentation products of glutamate did not allow to obtain a highly *Tetrasphaera*-enriched culture.
- The increase of PHA and glycogen during the anaerobic phase only accounted a small percentage of the carbon source consumed.
- Other storage routes should be studied to identify the fate of the carbon source stored under anaerobic conditions.

ACKNOWLEDGMENTS

C

Unión Europea Fondo Europeo de Desarrollo Regional

Thank you for your attention!

Research Group on Biological Treatment and Valorisation of Liquid and Gas Effluents ENOCOV Universitat Autònoma

de Barcelona

talia Rey 🛛 🛛 Marina Badia 💴 🖓 Albert Guisasola 🗍 Juan Antonio Baeza

Inderstanding the role of *Tetrasphaera* in enhanced biological phosphorus removal

N. Rey, M. Badia, A. Guisasola, J. A. Baeza

Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona

