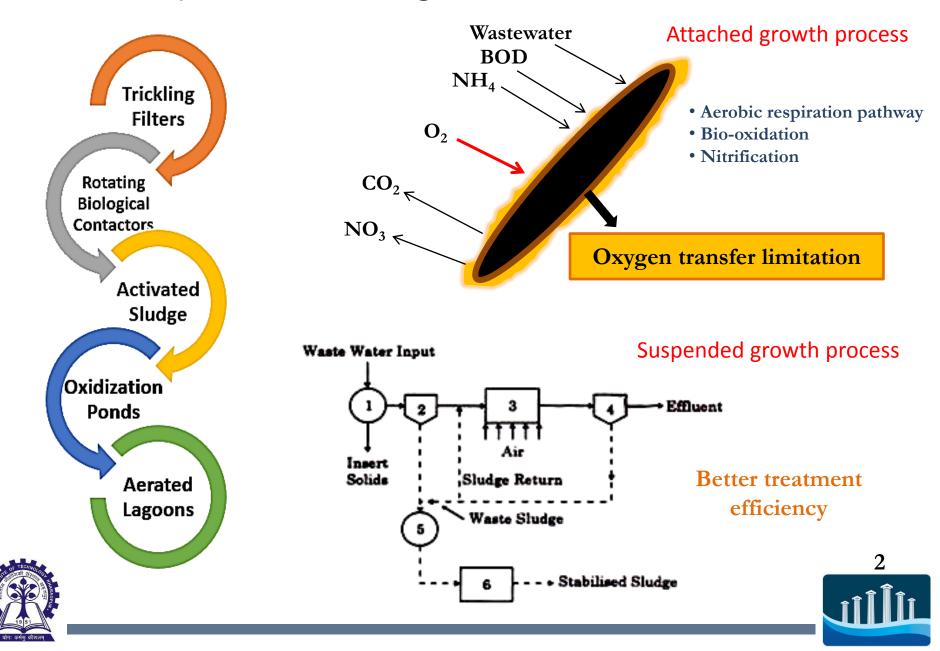
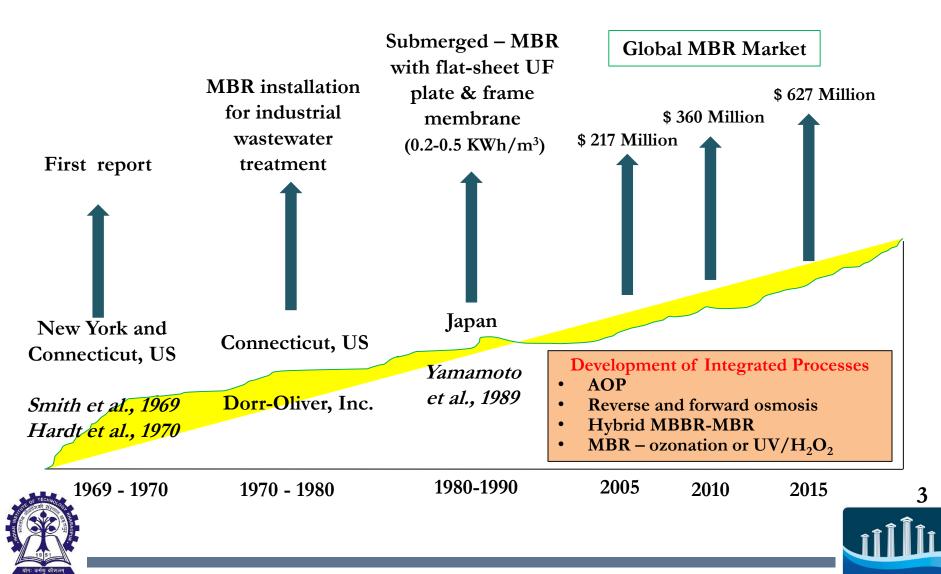


13th IWA Specialized Conference on Small Water and Wastewater Systems


5th IWA Specialized Conference on Resources-Oriented Sanitation

Topic: Advances in wastewater treatment by combined microbial fuel cell-membrane bioreactor (MFC-MBR)

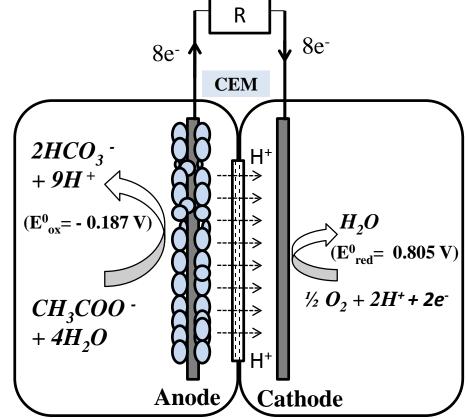
Sreemoyee Ghosh Ray Gourav Dhar Bhowmick Prof. Makarand M. Ghangrekar Prof. Arunabha Mitra


भारतीय प्रौद्योगिकी संस्थान खड़गपुर Indian Institute of Technology Kharagpur

Commonly Used Aerobic Biological Wastewater Treatment Processes

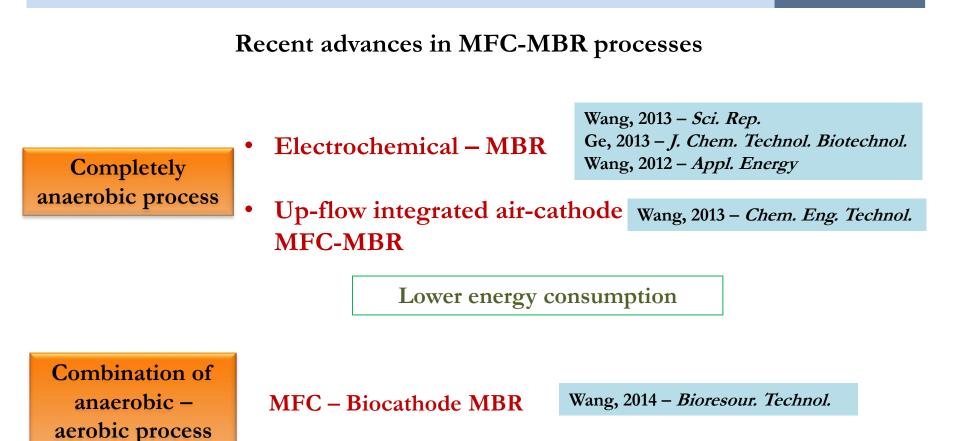
Membrane bioreactor (MBR) Technology

Biological – ASP + Membrane Filtration


MBR technology involves high energy-consuming process

Energy consumption of MBR can be lowered by integrating it with Microbial Fuel Cell (MFC) technology

energy to electrical energy Bio-electricity – An Alternative and Clean Energy


Conversion of bio-chemical

- How much electrical energy can be generated?
- Can we provide an efficient treatment?
- Can low-cost sustainable development of MFC-MBR technology be achieved?

Microbial Fuel Cell (MFC)

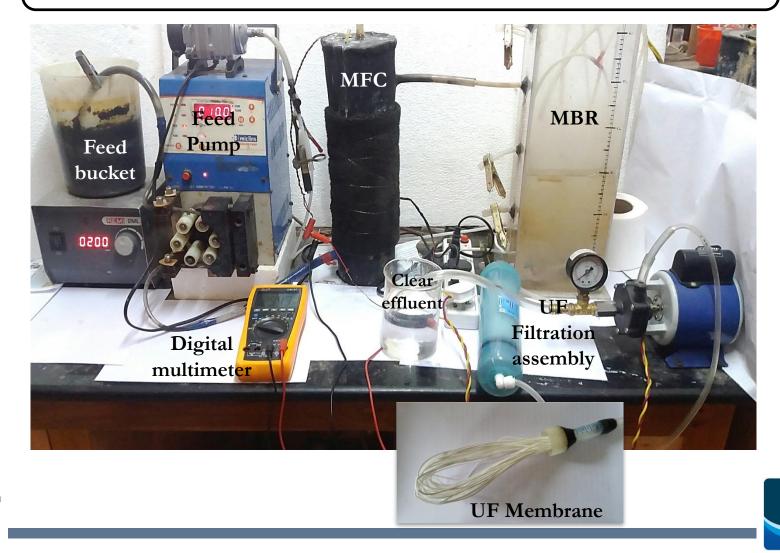
Consumption of electrical energy to develop MFC-based biosensors

Aim of our research

Development of two-stage continuous process of combining MFC with MBR treatment technology for a highly-efficient and reliable wastewater treatment

- For treatment of organic wastewater, having COD of 3 g/1
- To achieve better treatment efficiency in terms of organic matter removal
- Recovery of high quality reusable effluent

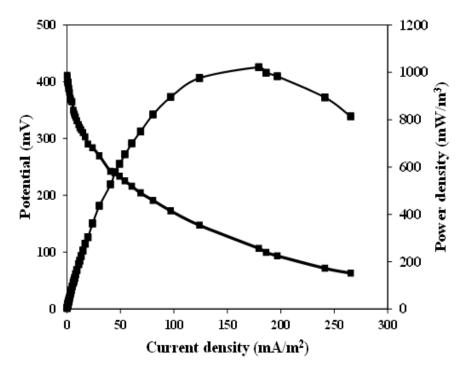
Reactor fabrication and operating principle


MFC			Aerobic MBR		
	Parameters	Operating conditions	Parameters	Operating conditions	
	Working volume	1.5 l	Working volume	11	
	Electrode material		MLSS	$7.09 \pm 0.48 \text{ g/l}$	
	Anode	Carbon felt (untreated)	F/M	0.08 kg COD/kg MLSS. day	
	Cathode Inoculum	C/TiO ₂ suspension Mixed anaerobic sewage sludge	HRT	10 h	
			Inoculum	Aerobic pond sediment	
	Substrate	Synthetic wastewater – Sucrose as carbon source Jadhav & Ghangrekar, 2009 (<i>Bioresour. Technol.</i>)	Substrate	MFC effluent	
				Hollow-fibre Polysulfone- made UF membrane (pore size 80 nm, OD 1 mm and ID 0.8 mm)	
	Substrate conc.	3 g COD/1	Membrane area	$300 \text{ cm}^2 / 1$	
	HRT	2 days	Permeate flux	38 l/m².h	

Electrochemical monitoring, polarization study and determination of coulombic efficiency (Logan, 2008 – John Wiley & Sons Inc.)

Total and soluble COD, MLSS, MLVSS, TKN and alkalinity (APHA 1998)

Two-stage wastewater treatment process combining microbial fuel cell and aerobic membrane bioreactor –


Results..

Generation of bio-electricity in MFC

Parameters	Responses
Open circuit potential	$536 \pm 25 \text{ mV}$
Working potential (100 Ω)	$260 \pm 12 \text{ mV}$
Power density	1.021 W/m^3
Internal resistance (Whole cell)	17.8 Ω
CE	4.35 %

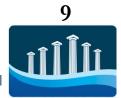
Treatment of wastewater in MFC

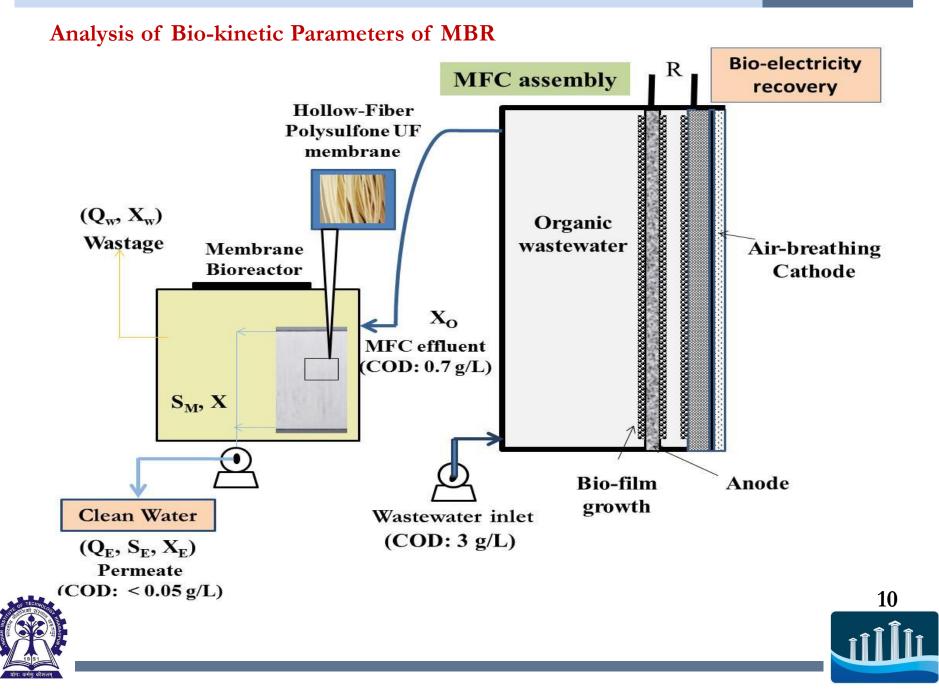
The COD removal efficiency of $78.4 \pm 2.14 \%$ was observed during MFC treatment. The total COD concentration of MFC effluent was 0.71 $\pm 0.04 \text{ g/l}$.

Polarization and power curves for MFC

Treatment of MFC-effluent in MBR with submerged UF membrane

	Wastewater (MFC	MFC reactor	MBR effluent
Parameters	reactor influent)	effluent	(Permeate)
Total COD	3.02 (0.03)	0.71 (0.04)	-
Soluble COD	2.65 (0.02)	0.59 (0.03)	0.04 (0.003)
TKN	0.31 (0.05)	0.147 (0.02)	0.010
TS	3.67 (0.05)	5.09 (0.08)	-
TSS	-	-	< 0.005
MLVSS	NA	0.9 (0.02)	ND
pН	7.53 (0.14)	7.31 (0.11)	7.4 (0.1)


^a All units are in g/L, except pH; numbers in the parenthesis are standard deviation NA= Not applicable: ND= Not detectable


Characteristics of effluent at different stages of MFC-MBR treatment

Organic removal efficiency in combined MFC-MBR process

Soluble COD, TKN and SS removal efficiency was 98.49 ± 0.28 %, 96.77 ± 0.12 % and 99.75 ± 0.18 %, respectively.

Kinetic Equations and Results

Monod equation for biomass growth rate: $\mu = \mu_m \frac{S}{K_s + S}$

The rate of change of biomass in MBR: $V \cdot \frac{dX}{dt} = \mu XV - k_d \cdot XV - Q_w X - Q_E X_E$

At steady state condition, dX/dt = 0: $\mu = k_d + \frac{Q_w}{v} + \frac{Q_E}{v} \cdot \frac{X_E}{X}$

Sludge retention time, SRT
$$(\theta_c) = \frac{1}{Q_w X + Q_E X_E}$$

Hence, $\mu = k_d + \frac{1}{SRT}$

Thus, the final equation for substrate utilization:

$$S = \frac{K_s(\frac{1}{SRT} + k_d)}{\mu_{m-}(k_d + \frac{1}{SRT})}$$
 The substrate balance

equation to demonstrate the expression for biomass generation in MBR:

$$X = \left[\frac{Q(S_0 - S) - S_E \cdot Q_E}{\left(k_d + \frac{1}{SRT}\right)}\right] \frac{Y}{V}$$

- The **SRT** was calculated as 15 days.
- Endogenous decay constant (k_d) and sludge-yield coefficient (Y) was calculated as 0.07 d⁻¹ and 0.216 g VSS/g of COD, respectively. 11

Summary..

• How much electrical energy can be generated?

Authors	Anode	Cathode	Maximum power density (W/m ³)
Wang, 2013 (Water Res.)	Graphite rod	Stainless steel mesh	1.43
Ge, 2013 (Sci. Rep.)	Carbon brush	Carbon cloth coated with 10% Platinum (Pt)	2
Li, 2014 (J. Chem. Technol. Biotechnol.)	Carbon cloth	Carbon cloth coated with 10% Pt	0.15
Liu, 2014 (Int. J. Hydrogen Energy)	Graphite granules	Stainless steel mesh	0.15
Li, 2014 (Sep. Purif. Technol.)	Graphite granules	Polyester filter cloth, modified by in situ formed PANi (polyaniline)-phytic acid (PA)	0.78
This Study	Carbon felt	C/TiO2 ink cathode	1.02

• Can we provide an efficient treatment?

The treated effluent generated in two-stage combined MFC-MBR process has the following characteristics:

Soluble COD: In the range of **30 – 40 mg/1** BOD: Less than **5 mg/1** TKN: **10 mg/1** TSS: Less than **5 mg/1**

- Can low-cost sustainable development of MFC-MBR technology be achieved?
- 1. Generation of high quality effluent Membrane retains most particulate matter.
- 2. Combined process has smaller footprint for medium-scale organic wastewater treatment.
- 3. Easy operation and less space is required for reactor set-up

Acknowledgement

सत्यमेव जयते Department of Science and Technology Ministry of Science and Technology Government of India

GOVERNMENT OF INDIA MINISTRY OF NEW AND RENEWABLE ENERGY

