Inhibition of Encapsulated Nitrite Oxidizing Bacteria by Short-time Exposure to Hydroxylamine

I. Johanidesová, P. Kelbich, A. Benáková, B. Uličník, O. Škorvan, R. Stloukal, J. Wanner

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

Introduction

- Nitrification
 - Nitritation
 - AOB
 - Nitration
 - NOB
- Partial nitrification
 - Oxygen demand 25% lower
 - Decreased COD consumption

Introduction

- Nitration inhibition
 - Higher concentration of nitrification substrates, products and intermediates
 - Hydroxylamine
 - Suspended biomass: 0.42 mg/l N-NH₂OH
 - Biofilters: 2.5 5.0 mg/l N-NH₂OH

Introduction

- Immobilisation
 - Supports slowly growing MO

Encapsulation in PVA or PEG

- Protection againts external conditions
- Lower sensitivity on inhibitors presence, pH value or temperature changes

Materials and methods

• LentiKat's

Materials and methods

Materials and methods I (dose)

- SBR
- 50 g pellets
 - Nitrosomonas europaea, Nitrobacter winogradskyi
- 1 I diluted rejected water
- HRT 3.3 days
- DO > 4 mg/l, pH 7.0 7.3
- Initial N-NH₂OH concentration 10 200 mg/l

Results I (dose)

N-NH₂OH 0 mg/l (left) and 50 mg/l (right)

Materials and methods II (HRT)

- SBR
- 100 g pellets
 - Nitrosomonas europaea, Nitrobacter winogradskyi
- 1.2 I diluted rejected water
- N_{amon} loading 200 mg/(l.d)
- DO > 4 mg/l, pH 7.2 ± 0.15
- Initial N-NH₂OH concentration 200 mg/l
- HRT 1 day and 3 days

Results II (HRT)

- 1-day HRT

 c(N-NO₂)_{MAX} = 150 mg/l

 3-days HRT
 - $-c(N-NO_2)_{MAX} = 500 \text{ mg/l}$

Results (FISH)

• AOB before (left) and after (right) inhibition

Conclusion

- Because of higher chemical resistance of bacteria which are immobilised in PVA pellets the N-NH₂OH concentration needed is higher than in the case of suspended biomass.
- Unfortunately, the N-NH₂OH concentration needed for full nitration inhibition has not been found.
- However, partial nitrification with immobilised biomass using nitration inhibition with hydroxylamine could be an appropriate method for nitrogen removal from water with high N_{amon} concentration.

Acknowlogements

- Financial support from
 - specific university research (MSMT No 20-SVV/2016)
 - Ministry of industry and trade of the Czech Republic (project FR -TI4/254)
 - foundation "Nadání Josefa, Marie a Zdeňky Hlávkových"

Thank

you

for

your

attention