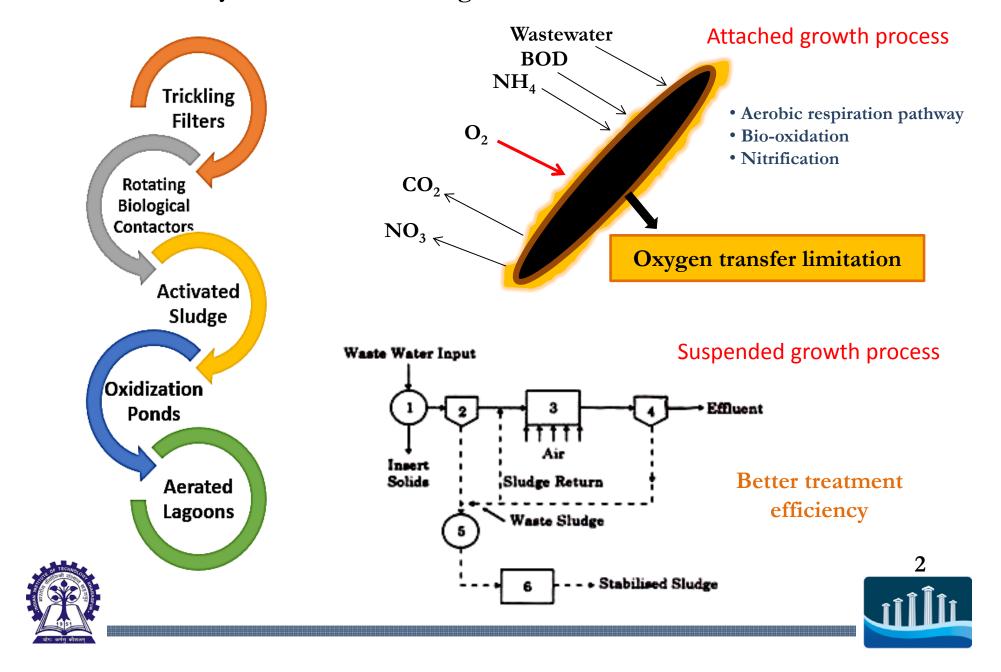


13th IWA Specialized Conference on Small Water and Wastewater Systems

5th IWA Specialized Conference on Resources-Oriented Sanitation

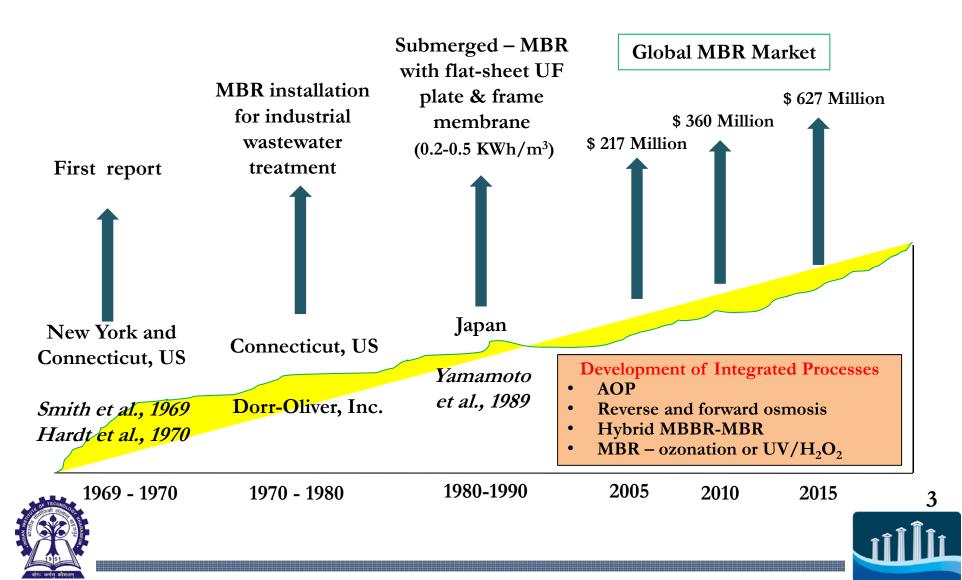
Topic: Advances in wastewater treatment by combined microbial fuel cell-membrane bioreactor (MFC-MBR)

Sreemoyee Ghosh Ray


Gourav Dhar Bhowmick

Prof. Makarand M. Ghangrekar

Prof. Arunabha Mitra

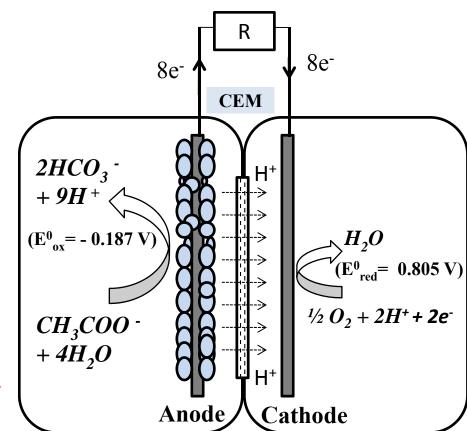


Commonly Used Aerobic Biological Wastewater Treatment Processes

Membrane bioreactor (MBR) Technology

Biological – ASP + Membrane Filtration

MBR technology involves high energy-consuming process


Energy consumption of MBR can be lowered by integrating it with Microbial Fuel Cell (MFC) technology

Conversion of bio-chemical energy to electrical energy

Bio-electricity – An Alternative and Clean Energy

- How much electrical energy can be generated?
- Can we provide an efficient treatment?
- Can low-cost sustainable development of MFC-MBR technology be achieved?

Microbial Fuel Cell (MFC)

Recent advances in MFC-MBR processes

Completely anaerobic process Electrochemical – MBR

Wang, 2013 - Sci. Rep. Ge, 2013 - J. Chem. Technol. Biotechnol. Wang, 2012 - Appl. Energy

Up-flow integrated air-cathode Wang, 2013 - Chem. Eng. Technol. MFC-MBR

Lower energy consumption

Combination of anaerobic aerobic process

MFC - Biocathode MBR

Wang, 2014 - Bioresour. Technol.

Consumption of electrical energy to develop MFC-based biosensors

Aim of our research

Development of two-stage continuous process of combining MFC with MBR treatment technology for a highly-efficient and reliable wastewater treatment

- For treatment of organic wastewater, having COD of 3 g/1
- To achieve better treatment efficiency in terms of organic matter removal
- Recovery of high quality reusable effluent

Reactor fabrication and operating principle

MFC Aerobic MBR

Parameters	Operating conditions
Working volume	1.5 l
Electrode material	
Anode Cathode	
Inoculum	Mixed anaerobic sewage sludge
Substrate	Synthetic wastewater – Sucrose as carbon source Jadhav & Ghangrekar, 2009 (Bioresour. Technol.)
Substrate conc.	3 g COD/1
HRT	2 days

Parameters	Operating conditions
Working volume	1 l
MLSS	$7.09 \pm 0.48 \text{ g/l}$
F/M	$0.08~\mathrm{kg}~\mathrm{COD/kg}~\mathrm{MLSS}.~\mathrm{day}$
HRT	10 h
Inoculum	Aerobic pond sediment
Substrate	MFC effluent
Membrane filtration	Hollow-fibre Polysulfone- made UF membrane (pore size 80 nm, OD 1 mm and ID 0.8 mm)
Membrane area Permeate flux	300 cm ² /1 38 1/m ² .h
1 CHILEAGE HUX	JO 1/ 111 .11

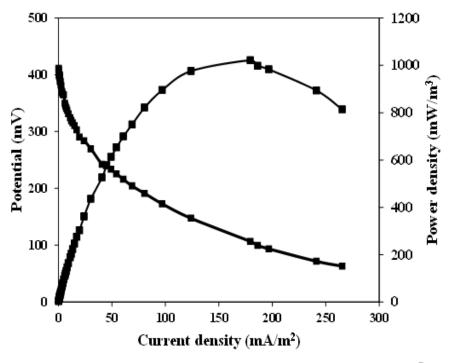
Electrochemical monitoring, polarization study and determination of coulombic efficiency (Logan, 2008 – John Wiley & Sons Inc.)

Total and soluble COD, MLSS, MLVSS, TKN and alkalinity

Bench-scale working model

UF Membrane

Two-stage wastewater treatment process combining microbial fuel cell and aerobic membrane bioreactor –


Results..

Generation of bio-electricity in MFC

Parameters	Responses
Open circuit potential	$536 \pm 25 \text{ mV}$
Working potential (100 Ω)	$260 \pm 12 \text{ mV}$
Power density	1.021 W/m^3
Internal resistance (Whole cell)	$17.8 \ \Omega$
CE	4.35 %

Treatment of wastewater in MFC

The COD removal efficiency of $78.4 \pm 2.14 \%$ was observed during MFC treatment. The total COD concentration of MFC effluent was $0.71 \pm 0.04 \text{ g/l}$.

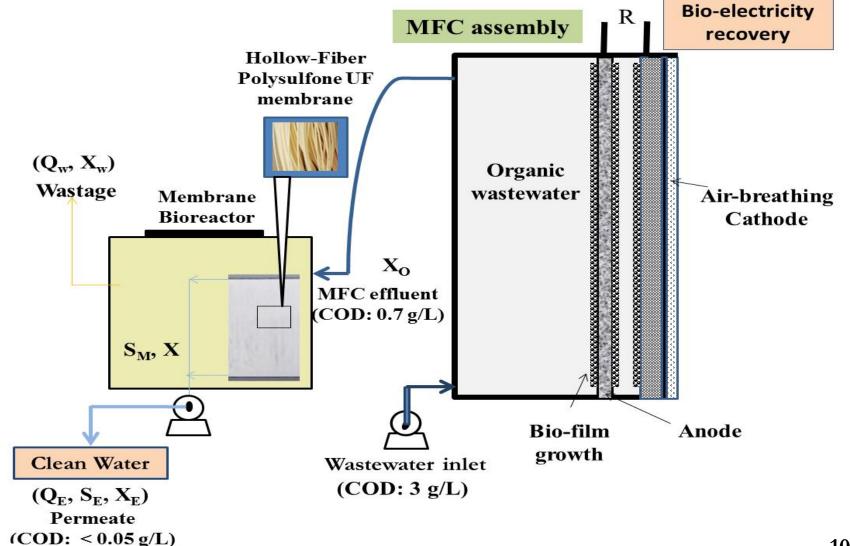
Polarization and power curves for MFC

Treatment of MFC-effluent in MBR with submerged UF membrane

	Wastewater (MFC	MFC reactor	MBR effluent
Parameters	reactor influent)	effluent	(Permeate)
Total COD	3.02 (0.03)	0.71 (0.04)	-
Soluble COD	2.65 (0.02)	0.59 (0.03)	0.04 (0.003)
TKN	0.31 (0.05)	0.147 (0.02)	0.010
TS	3.67 (0.05)	5.09 (0.08)	-
TSS	-	-	< 0.005
MLVSS	NA	0.9 (0.02)	ND
pН	7.53 (0.14)	7.31 (0.11)	7.4 (0.1)

^a All units are in g/L, except pH; numbers in the parenthesis are standard deviation NA= Not applicable: ND= Not detectable

Characteristics of effluent at different stages of MFC-MBR treatment


Organic removal efficiency in combined MFC-MBR process

Soluble COD, TKN and SS removal efficiency was 98.49 ± 0.28 %, 96.77 ± 0.12 % and 99.75 ± 0.18 %, respectively.

Analysis of Bio-kinetic Parameters of MBR

10

Kinetic Equations and Results

Monod equation for biomass growth rate: $\mu = \mu_m \frac{S}{K_S + S}$

The rate of change of biomass in MBR: $V \cdot \frac{dX}{dt} = \mu XV - k_d \cdot XV - Q_w X - Q_E X_E$

At steady state condition, dX/dt = 0: $\mu = k_d + \frac{Q_w}{V} + \frac{Q_E}{V} \cdot \frac{X_E}{X}$

Sludge retention time,
$$SRT(\theta_c) = \frac{VX}{Q_w X + Q_E X_E}$$

Hence, $\mu = k_d + \frac{1}{SRT}$

Thus, the final equation for substrate utilization: $S = \frac{K_s(\frac{1}{SRT} + k_d)}{\mu_{m-}(k_d + \frac{1}{SRT})}$ The substrate balance

equation to demonstrate the expression for biomass generation in MBR:

$$X = \left[\frac{Q(S_0 - S) - S_E \cdot Q_E}{\left(k_d + \frac{1}{SRT}\right)}\right] \frac{Y}{V}$$

- The **SRT** was calculated as 15 days.
- Endogenous decay constant (k_d) and sludge-yield coefficient (Y) was calculated as 0.07 d⁻¹ and 0.216 g VSS/g of COD, respectively.

Summary..

• How much electrical energy can be generated?

Authors	Anode	Cathode	Maximum power density (W/m³)
Wang, 2013 (Water Res.)	Graphite rod	Stainless steel mesh	1.43
Ge, 2013 (Sci. Rep.)	Carbon brush	Carbon cloth coated with 10% Platinum (Pt)	2
Li, 2014 (J. Chem. Technol. Biotechnol.)	Carbon cloth	Carbon cloth coated with 10% Pt	0.15
Liu, 2014 (Int. J. Hydrogen Energy)	Graphite granules	Stainless steel mesh	0.15
Li, 2014 (Sep. Purif. Technol.)	Graphite granules	Polyester filter cloth, modified by in situ formed PANi (polyaniline)-phytic acid (PA)	0.78
This Study	Carbon felt	C/TiO2 ink cathode	1.02

• Can we provide an efficient treatment?

The treated effluent generated in two-stage combined MFC-MBR process has the following characteristics:

Soluble COD: In the range of 30 - 40 mg/1

BOD: Less than 5 mg/l

TKN: 10 mg/1

TSS: Less than 5 mg/1

- Can low-cost sustainable development of MFC-MBR technology be achieved?
- 1. Generation of high quality effluent Membrane retains most particulate matter.
- 2. Combined process has smaller footprint for medium-scale organic wastewater treatment.
- 3. Easy operation and less space is required for reactor set-up

Acknowledgement

सत्यमेव जयते Department of Science and Technology Ministry of Science and Technology Government of India

Thank You

