

13th **IWA**Specialized Conference on Small Water and Wastewater Systems

5th **IWA**Specialized Conference on
Resources-Oriented Sanitation

SERVING THE UNSERVED

A Sustainable Sanitary System to Serve the Remote and Deprived Hamlets

By

Eng. Bassma T. Hassan

Dr. Ahmed El-Gendy

14-17 September, 2016

Outline

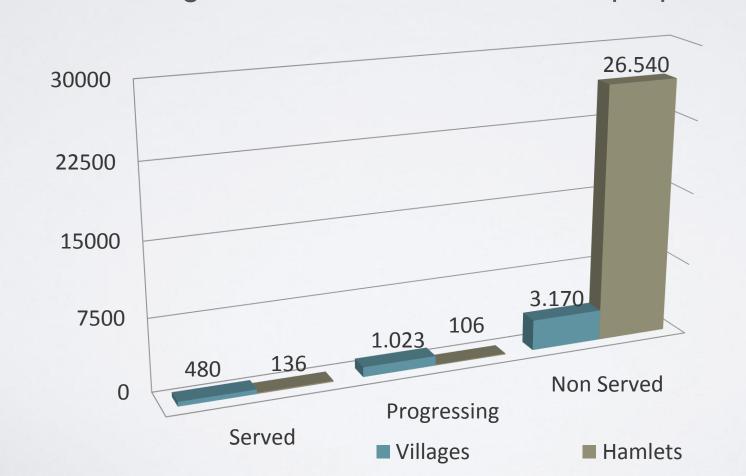
- 1) Introduction
- 2) Problem Identification
- 3) Solution Design
 - 1) 1st Solution
 - 2) 2nd Solution
- 4) Conclusion
- 5) Recommendation

INTRODUCTION

Focusing on Hamlets - less than 5000 capita-

Introduction • 3170 Village & 26,540 hamlets without proper wastewater system

Problem


Identification

Sol. Design

1st 2nd Solutio

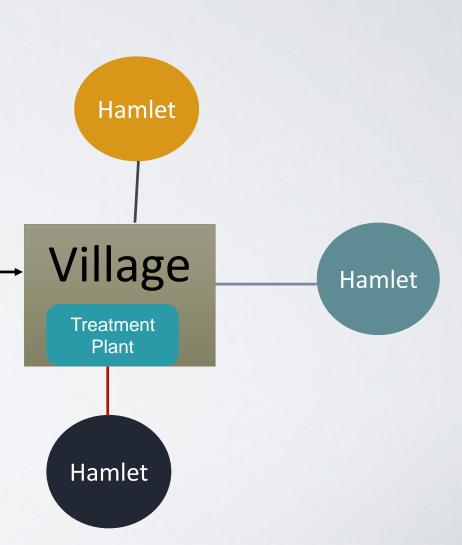
Conclusion

Recommendation

50,000,000 People

Problem Identification

- Centralized System
 - High Cost Erection and Maintenance
 - Less beneficiaries
- · Oper of skilled treather
 - Engrayishertagencrease groundwater table
 - Threats health and lamiet of ng environment


Introduction

Problem Identification

Sol. Design

1st 2nd
Solutio
Solutio

Conclusion

Design of small scale and Sewage Collection system for Hamlets in Egypt

DESIGN REQUIREMENTS

Introduction

Problem Identification

Sol. Design

1st 2nd
Solutio Solutio

Conclusion

- Cost Effective
- Low Energy Consumption
- Sustainable System and Environmentally Friendly
- Low Maintenance

PROTOTYPE HAMLET

Introduction

Problem Identification

Sol. Design

1st 2nd
Solutio Soluti
n on

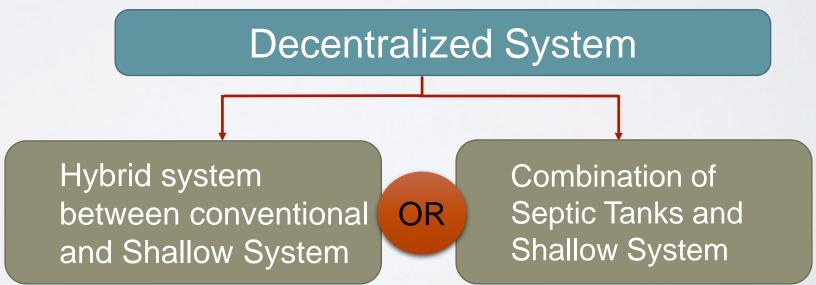
Conclusion

- Al Gozaira, Ismalia Governorate
- Surrounded Two Water Bodies
 - Al Rayah Drain
 - Irrigation Tertiary Canal
- Current Population 1,138 Capita
- Total Area 100,000 m2
- Normal Growth Rate 3.5%
- Sewage Flow is 85 l/c/d

Tackling The Problem

Adequate Systems

Introduction


Problem Identification

Sol. Design

1st 2nd
Solutio Solutio

Conclusion

- 1. Conventional System
- 2. Shallow System
- 3. Septic Tank

SOLUTION DESIGN CRITERIA

Criteria	Conventional System	Shallow System	Alternative Solution With Septic Tank
Pipes Alignment	Middle of the street	Middle of the Street	Middle of the Street
Min. Street Width	More than 3 m	Less than 3 m	Any
Min. Diameter	200 mm	150 mm	50 mm
Min. Cover	1 m	0.5 m	0.5 m
Min. Slope	3.25 m/km	3.5 m/km	0 m/km
Min. Velocity	0.6 m/s	0.6 m/s	-
Max.Velocity	2.5 m/s	2.5 m/s	2.5 m/s
Pipes Connection	Manhole	Inspection Chamber	Inspection Chamber and Inspection Ports

1st Solution: Combination between Shallow system and Conventional System

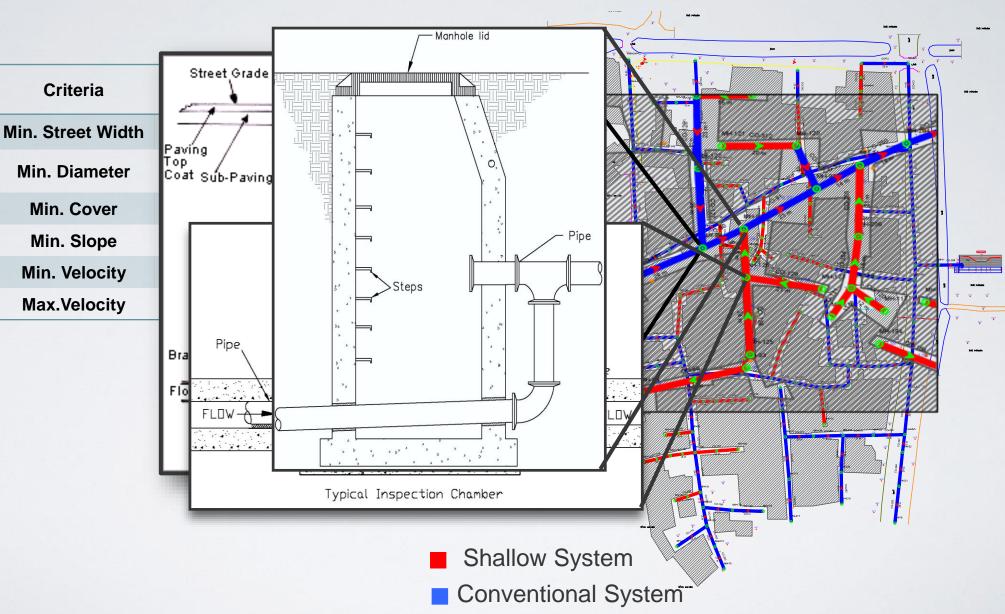
Introduction

Problem Identification

Sol. Design

1 st Solutio

2nd Solutio Criteria


Min. Cover

Min. Slope

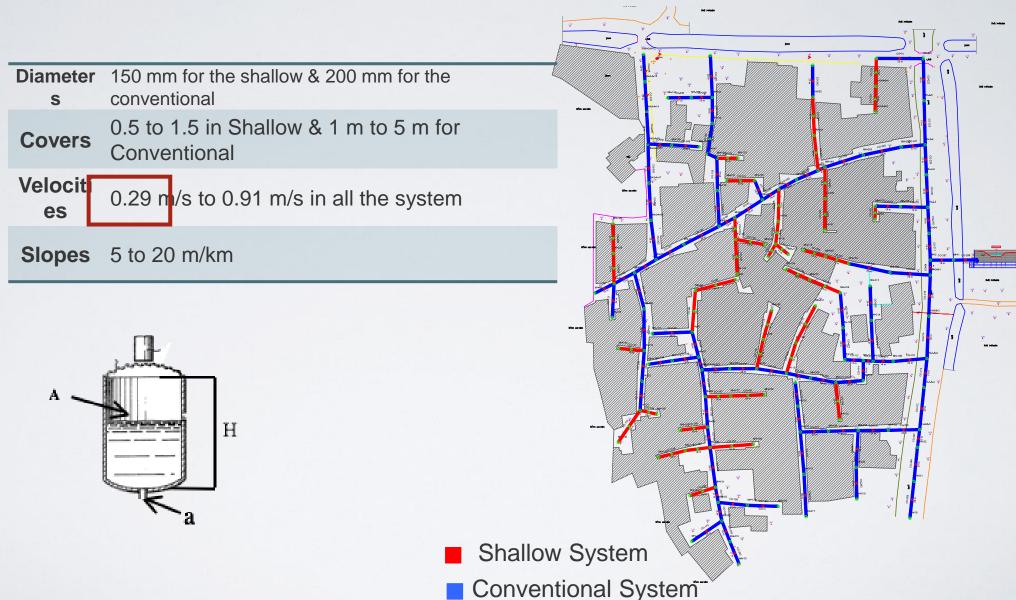
Min. Velocity

Max.Velocity

Conclusion

1st Solution: Combination between Shallow system and Conventional System

Introduction


Problem Identification

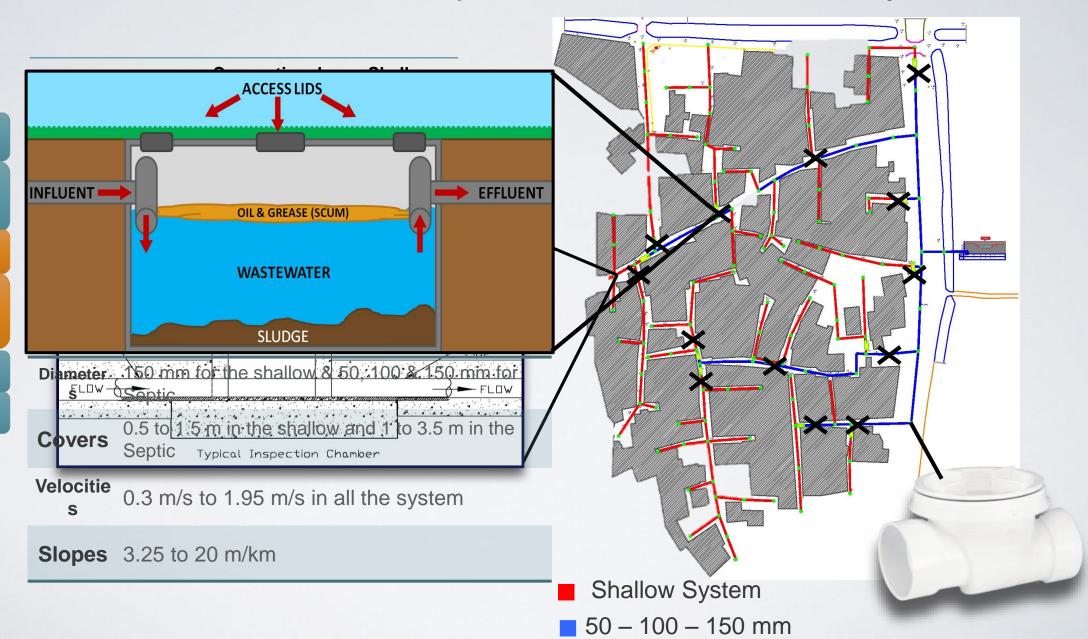
Sol. Design

2nd

1 st Solutio Solutio

Conclusion

2nd Solution: Combination of Septic Tanks and Shallow System


Introduction

Problem Identification

Sol. Design

1st 2nd Solutio

Conclusion

COST ANALYSIS

Introduction

Problem Identification

Sol. Design

1st 2nd Solutio

Conclusion

Solution 1 - Shallow and Conventional System					
Name	Quantity	Unit Cost	Cost		
150 mm Pipes	581 m	EGP400.00	EGP232,400.00		
200 mm pipe	2279 m	EGP500.00	EGP1,139,500.00		
Inspection Chamber	28	EGP800.00	EGP22,400.00		
Manholes	75	EGP3,000.00	EGP225,000.00		
Drop Manholes	9	EGP5,600.00	EGP50,400.00		
Excavation	2008 m ²	EGP19.00	EGP38,152.00		
Total Cost	EGP1,707,852.00				

Solution 2 - Alternative System					
Name	Quantity	Unit Cost	Cost		
50 mm Pipes	946 m	EGP200.00	EGP189,200		
100 mm pipe	405 m	EGP300.00	EGP121,500		
150 mm pipe	1470 m	EGP400.00	EGP588,000.00		
Septic Tanks	13	EGP16,023.00	EGP208,299.00		
Inspection Chamber	122	EGP800.00	EGP97,600.00		
Inspection Ports	17	EGP300	EGP5,100		
Excavation	1718	EGP19.00	EGP32,642.00		
Total Cost	EGP1,242,341.00				

CONCLUSION

2nd solution is Efficient and Effective solution for hamlets in Egypt, due to:

Introduction

Problem Identification

Sol. Design

1st 2nd
Solutio Solutio

Conclusion

- Cost Effective
- Low Energy Consumption
 - Gravity Sewer
- Sustainable System and Environmentally Friendly
 - Effluent Reuse in Agriculture as fertilizers
- Low Maintenance
 - Septic Tank de-suldged every 6 month to two years

Introduction

Problem Identification

Sol. Design

1st 2nd
Solutio Solutio
n n

Conclusion

Recommendation

- The System should be applied to solve the lack of sanitation in small communities
- One person costs around EUR 40 80 and can be served up to 10 years at least

Acknowledgment

- The American University in Cairo
- Water Resources Research Institute
- Dr. Tarek Sabry
- Dr. Emad Hamdy Imam
- Eng. Sara Alaa
- Eng. Shereen Helal
- Eng. Meriam Melad

Thank you

Any Questions?