

Microalgae biomass growth and lipid production using primary treated wastewater

Eirini F. Barkonikou, AndrianaF. Aravantinou, and Ioannis D. Manariotis

Environmental Engineering Laboratory Department of Civil Engineering

- Introduction Microalgae & Wastewater treatment
- Materials and Methods
- Results Biomass production
 - Nutrients removal
 - Lipid production
- Conclusions

The aim of this study was to evaluate the algal production in a laboratory scale open pond using as a feedstock primary treated wastewater.

To further improve the nutrient removal from wastewater and to investigate the potential production of biomass as as renewable energy source.

Introduction

Microalgae and wastewater treatment:

- ✓ Natural treatment systems (sewage lagoons/sewage farms, stabilization ponds, other algal reactors). The first farm for the treatment of sewage with algae was reported in late 1800s in Berlin.
- ✓ Wastewater treatment with algae offers important advantages:
 - low capital and operation cost
 - low energy requirements
 - contribution to reduction of CO₂ emissions
 - use of algal biomass as fertilizer or fuel source
 - great potential for algae to be used as biofuels.

Introduction

- The selection of microalgae for potential biofuel production should take into consideration the:
 - high algal cell density,
 - high lipids content,
 - but also their presence and survival in wastewater.

- What does affect algal growth?
 - Nutrients concentration, especially P and N
 - Aeration rate
 - Light conditions
 - Temperature
 - CO2
 - 🖝 рН

In UPEEL

Identification of suitable species and cultivation system

Aravantinou et al. (2013). Bioresource Technology, 147 (130-134).

In UPEEL

(University of Patras, Environmental Engineering Laboratory)

- Culture optimization
- Short-term toxicity of nanoparticles
 on microalgae growth Aravantinou *et al.* (2015). Ecotoxicology and Environmental Safety.

Microalgae harvesting
 Vergini et al. (2016)
 Journal of Applied Phycology

Scale-up
 Aravantinou et al. (2016)
 Environmental Processes

Materials and Methods

Six sets of experiments were conducted with primary treated wastewater in batch and continuous operating mode. The culture was exposed to artificial light 100 μ mol/m²s. In the last set the radiation intensity was set to 200 μ mol/m²s.

Phase	Operation mode	Flow rate	HRT (days)
1	Batch	-	-
2	Fill and draw	1 L/d	30
3	Continuous	1 L/d	30
4	Batch	-	-
5*	Batch	-	-
6**	Continuous	1 L/d	30

* Addition of PO_4^{-3} .

**Radiation intensity: 200 μ mol/m²s.

Materials and Methods

Experimental conditions	Investigating parameters	
 Laboratory- scale open pond: 50x50x25 cm (LxWxH) 	- Operation mode: Batch, Fill and Draw Continuous	
- Pre-cultured cells and secondary treated wastewater	 Flow rate/ Hydraulic Retention Time Photosynthetic radiation intensity: 100, 200 µmol·m⁻²·s⁻¹ 	
- Working volume: 30 L		
- Temperature: 21 \pm 2 °C	- Wastewater: Primary effluent	
- Photoperiod: 12 h: 12 h (dark: light)		
- Air supply: 2 L/min		
- Operation period: 14 to 33 d		

Material and Methods

Parameter	Method
Biomass	 Gravimetric method, Total suspended solids Absorbance (750 nm) Chl-a (APHA et al., 1998) Turbidity (NTU)
Total - N	Method 2,6- dimethylphenol (ISO 7890/1)
Nitrates	Ion Chromatography (APHA et al., 1998)
Total - P	Persulfate digestion and ascorbic acid method (APHA et al., 1998)
Phosphates	Ion Chromatography (APHA et al., 1998)
COD	Method 410.4 (O' Dell, 1993)
Soluble non-purgeable organic carbon	TOC analyzer (APHA et al., 1998)
рН	pH-meter
Lipid extraction	Method of Folch et al. (1957)

Results

Biomass concentration

- The growth rate of algae was affected by light intensity.
- The maximum biomass concentration of 449 mg/L was observed under continuous mode and high radiation intensity in phase 6.
- Although the light intensity is an important factor in algae growth, the nutrient concentration, which was fed in the pond, is more important for algae growth.

Nitrates

- Microalgae can assimilate a significant amount of nutrients in excess of the immediate metabolic needs.
- The nitrate removal was satisfactory, and the maximum decrease of nitrates concentration (76%) was observed the same day with the external addition of phosphorus on day 14 (Phase 5).

Results

Phosphates

Results

Lipid content

- The lipid content was affected by the influent nutrient concentration, and higher values were observed with low nitrates concentration in the influent.
- Nutrients removal and the impact of nutrients concentration on the lipid content of algal cells is an essential step before the scale-up of biomass and lipid production by microalgae.

- ✓ The algal production was satisfactory in a laboratory open pond, which was fed with primary treated wastewater.
- Microalgal growth was affected by phosphates concentration and irradiation intensity.
- ✓ The efficiency of microalgae to remove nitrates and phosphates was satisfactory, and reached removals of 76 and almost 100%, respectively.
- ✓ Finally, the highest lipid content was 15% when the microalgae faced starvation conditions.

- ✓ Scale-up of ponds with microalgae species with higher lipid content i.e. Scenedesmus rubescens.
- ✓ Cultivation of high lipid microalgae in outdoor ponds for wastewater treatment.
- Investigation of low-cost harvesting method for microalgae biomass (magnetic microparticles, electrocoagulation, flocculation etc.)
- ✓ Long-term impact of nanoparticles on microalgae cultures.

Thank you for your attention !!!

