The Evaluation Of Technologies For Small, New Design Wastewater Treatment Systems

About me ...

- Greg McNamara
- School of Mechanical and Manufacturing
- Dublin City University
- Final six months of PhD

"Economic and Environmental assessment of wastewater treatment – A Lifecycle Approach"

Background

- Research is funded by the Irish EPA as part of Horizon 20 / 20 commitments
- Irish Water (IW) form a large part of the research steering committee
- Research is broken down into two strands:
 - Part a) LCA of wastewater treatment systems (WWTS) in Ireland
 - Part b) LCC of small WWTS in Ireland (500 2,000 PE)

Background

- \blacksquare > 87% of WWTS in Ireland are below 2,000 PE
- Many plants are old, overloaded and in need of significant capital investment
- There can be a culture of "regional tranching" of WWTS in Ireland

Main objective

- Enlighten toolkit users about the trade-offs between:
 - operation and capital expenditure, and
 - the economic and environmental costs

Specific objectives

- Carry out life cycle costing for a selection of systems
- Develop a decision support toolkit

Scope

- Toolkit should be able to be operated by both technical and non-technical users
- Toolkit should allow for variations in
 - Scale (500 2,000 PE)
 - Loading
 - Discharge limits
 - Temperature
 - Topography

Methodology

- Literature review
- Identification of feasible systems
- Data compilation
- Systems modelling
- Testing
- Validation

Systems	Abbv.	Family	
Complete mix activated sludge	CMAS	Suspended growth	
Anoxic/oxic	A/O	Suspended growth	
Anaerobic/anoxic/oxic	A/A/O	Suspended growth	
Extended aeration	EA	Suspended growth	
Oxidation ditch	OD	Suspended growth	
Sequence batch reactor	SBR	Suspended growth	
Rotating biological contactors	RBC	Attached growth	
Trickling filters	TF	Attached growth	
Integrated fixed-film activated sludge	IFAS	Hybrid	
Moving bed biofilm reactor	MBBR	Hybrid	
Constructed wetlands	CW	Natural	

Modelling

Models were developed for:

- Footprint
- Energy requirements
- Chemical requirements
- Sludge production
- Capital expenditure
- Operational expenditure
- Lifecycle costing (NPV)

Decision Support Tool (DST)

System Selection Support Tool

DST homepage Paramter Inputs Process Information Systems Comparison Additional Parameters Set up

User Guide DST Technical Documentation Wastewater Treatment System Decision Support Tool Let's Start! V.3.0 2016

User input parameters

System Selection Support Tool

lant Loading		Discharge Limits		Sludge
Average Influent Loading	alculation method	BOD5 (mg/L)	20 💌	On-site Sludge Treatment
BOD5 (mg/L) 400	Hydraulic load 📀	COD (mg/L)	125 🗸	Dewatering
COD (mg/L) 700	Agglomeration _C	TSS (mg/L)	25 👻	Mechanical
	Agglomeration (PE)	TN (mg/L)	10 🚽	Stabilisation
TN (mg/L) 65	2000	TP (mg/L)	1 💽	Enter
TP (mg/L) 10		NH4 (mg/L)	0.5 💌	Surface area restriction
NH4 (mg/L) 25		PO43- (mg/L)	0.5 🔻	< = 1000 • (m2)
PO43- (mg/L) 7		Chlorination	V	Filter
Hydraulic load 400 (m3/day)		Dechlorination		Energy -
Enter Plant Load	-	Enter Discharge	a lasten	

Reset

Sludge disposal

- Three sludge disposal options included:
 - 1. No treatment contractor disposal
 - 2. Mechanical dewatering (centrifuge)
 - 3. Sludge drying beds

]	Sludge
-	On-site Sludge Treatment 🛛 🗷
–	Dewatering
-	Mechanical
Y	N/A Mechanical Drying beds
Y	Enter
5 🖵	Surface area restriction
¥	< = 5000 • (m2)
V	Filter
	CAPEX
nits	Submit

Additional parameters

200

60

1.5

25

System Selection Support Tool DST homepage Paramter Inputs Process Information Systems Comparison Additional Parameters Set up O. Unlock advanced features Cost Parameters PE definitions Aeration parameters Electricity (€/kWh) Mean annual temperature (C) Hydraulic (L/person) 0.2 10 Labour operator (€/hour) Alpha value Organic (g BOD/person) 20 0.5 Labour engineer (€/hour) Beta value 28 0.95 Preliminary treatment Labour helper (€/hour) Fouling factor Treatment type 12 0.9 Labour lab. tech (€/hour) Diffuser height (m) 20 0.5 Footprint Ferric choride (€/Litre) Fine bubble OTE (kgO2/kWh) 0.7 3.5 Clearance offset (m) Calcium carbonate (€/kg) Course bubble OTE (kgO2/kWh) 2.0 0.2 NPV Calcium hydroxide (€/kg) Height above sea level (m) 0.5 118 Systems lifetime (years)

Chlorine (€/Litre)

Methanol (€/Litre)

Sludge disposal (€/m3)

Replant wetlands (€/m2)

Land cost (€/km2)

0.5

0.7

20

20

2200000

Enter changes

Program outputs

System Selection Support Tool

Systems comparison

×

System Selection Support Tool

Preliminary findings - Labour

- Labour costs are subject to significant economies of scale
- Labour- hours, and required expertise estimations are often poorly calculated
- Underestimating labour requirements can lead to a decline in system performance and ultimately, system failure

2000 PE

500 PE

Preliminary findings - CAPEX

Capital expenditure dominates lifecycle cost

Limitations

- Capital expenditure estimations are prone to significant uncertainty
- Low energy estimations based on first principles – not reflecting full economies of scale
- Oxygen transfer efficiency (OTE) assumptions need further analysis/parameterisation
 Specific component life times required

Further work

- A general address of assumptions
- Inclusion of a sensitivity analysis function
- Inclusion of LCA component of program
- More detailed capital expenditure breakdown
- Further OTE investigation needed
- Additional sludge treatment options

Thank you for listening

Questions?