Investigating The Viability and Performance Of The Pilot Scale Fly Ash/Lime Filter Tower For Onsite Greywater Treatment

S. Nondlazi, N. Ngqwala, B. Zuma, R. Tandlich,

Environmental Health and Biotechnology Research Group
Division of Pharmaceutical Chemistry
Rhodes University

13th IWA Specialized Conference on Small Water and Wastewater Systems
5th IWA Specialized Conference on Resources Oriented Sanitation
14 – 17 September 2016. Athens, Greece
Water Scarcity

• Increase in urbanisation – Increase in water demand.

• South Africa is a water scarce country.

• Alternatives are required - e.g. Greywater, Rainwater harvesting etc.

• Innovative approaches are needed to mitigate water scarcity.
The use of greywater has become a common practice.

Greywater can be used for non-potable purposes [24].

Environmental feasibility [14].

Economic feasibility [18].
Greywater

• The US, Australia and the Middle East have accepted the use of greywater for irrigation [17,18].

• Reduces the demand for water supply [6].

• Reduce the demand for high quality potable water for non-potable uses [3,6].

• Reduce energy demands and carbon footprint of water services [6].
Greywater in South Africa

• Some areas in South Africa lack proper sanitation facilities [1].

• Greywater disposal is a major sanitation problem [1].

• Greywater is often disposed outside the houses.

• The ponded greywater creates environmental and health risks [1,4].

• Microorganisms are likely to proliferate, causing diseases in humans and animals [5].
Fly Ash/ Lime Filter Tower (FLFT)

- On-site treatment.
- Low cost material.
 - Avoid theft.
- Easy to operate.
- Coupled to a drip irrigation system.
FLFT

- **Fly Ash**
 - By-product of coal combustion [5].
 - Made up of different elements e.g. Al,
 - Where most of the greywater treatment occurs.

- **Water Hyacinth** (*Eichhornia crassipes*).
 - Invasive species [10].
 - High absorptivity [10].
 - Used for pH stability.

Image adapted from http://www.painetworks.com/previews/gj/gj0690.html
Methodology

Greywater Characterization
- Microbial constituents
 - Faecal Coliforms
 - Total Bacteria
- pH
- Turbidity
- Chemical Oxygen Demand (COD)
- Nitrates
- Phosphates
- Chlorides
- Ammonium

Environmental Impact Studies
- Faecal coliforms
- Total bacteria (Anaerobic and aerobic)
- Bulk density
- Particle size density
- Loss on ignition
- Metal analysis
- pH
- Plant analysis - Data not available
Greywater Characterization

• *Microbial analysis*

• **Faecal coliforms**
 – Influent = ~ 65 - 110 CFU/100 ml
 – Effluent = ~ 20-50 CFU/100 ml

• **Total bacteria**
 – Influent = ~3.0 x 10^7 CFU/ml
 – Effluent = ~6.0 x 10^6 CFU/ml
Table 1: The physico-chemical components of the greywater before and after treatment with the FLFT. (Grahamstown East).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Fingo</th>
<th></th>
<th>Extension 1</th>
<th></th>
<th>Extension 9</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Influent</td>
<td>Effluent</td>
<td>Influent</td>
<td>Effluent</td>
<td>Influent</td>
<td>Effluent</td>
</tr>
<tr>
<td>pH</td>
<td>8.92 ± 0.5</td>
<td>6.87 ± 0.5</td>
<td>7.63 ± 0.7</td>
<td>6.91 ± 0.5</td>
<td>7.22 ± 0.6</td>
<td>7.19 ± 0.5</td>
</tr>
<tr>
<td>Turbidity (ntu)</td>
<td>748 ± 213.4</td>
<td>430 ± 411.1</td>
<td>691 ± 98.8</td>
<td>368 ± 97.3</td>
<td>1032 ± 55.5</td>
<td>598 ± 276.9</td>
</tr>
<tr>
<td>COD (mg/l)</td>
<td>2116.2 ±108.1</td>
<td>392.2 ±23.0</td>
<td>2994.5 ± 653.3</td>
<td>411.7 ±69.5</td>
<td>2978.3 ±129.2</td>
<td>376.5 ±96.4</td>
</tr>
<tr>
<td>NO₃⁻ (mg/l)</td>
<td>96.54 ± 87.9</td>
<td>45.58 ± 21.9</td>
<td>71.61 ± 50.8</td>
<td>24.43 ± 17.4</td>
<td>78.95 ± 7.4</td>
<td>44.84± 10.8</td>
</tr>
<tr>
<td>PO₄⁻ (mg/l)</td>
<td>1.87 ± 0.6</td>
<td>0.78 ± 0.7</td>
<td>8.08 ± 3.2</td>
<td>2.14 ± 1.8</td>
<td>3.71 ± 2.2</td>
<td>2.45 ± 1.9</td>
</tr>
<tr>
<td>NH₄⁺ (mg/l)</td>
<td>3.25 ± 1.9</td>
<td>1.73 ± 1.4</td>
<td>6.93 ± 3.1</td>
<td>3.392 ± 2.6</td>
<td>2.55 ± 1.8</td>
<td>1.30 ± 1.8</td>
</tr>
<tr>
<td>Cl⁻ (mg/l)</td>
<td>7.80 ± 3.1</td>
<td>4.43 ± 2.0</td>
<td>15.15 ± 6.3</td>
<td>7.9 ± 3.1</td>
<td>6.0 ± 3.1</td>
<td>3.86 ± 1.9</td>
</tr>
</tbody>
</table>
Table 2: The physico-chemical components of the greywater before and after treatment with the FLFT. (Grahamstown West).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Town 1</th>
<th>Town 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Influent</td>
<td>Effluent</td>
</tr>
<tr>
<td>pH</td>
<td>7.23 ± 0.6</td>
<td>6.94 ± 0.5</td>
</tr>
<tr>
<td>Turbidity (ntu)</td>
<td>986 ± 282.6</td>
<td>26.2 ± 6.5</td>
</tr>
<tr>
<td>COD (mg/l)</td>
<td>1509.7 ± 260.9</td>
<td>291.3 ± 95.1</td>
</tr>
<tr>
<td>NO₃⁻ (mg/l)</td>
<td>35.10 ± 10.7</td>
<td>23.40 ± 8.4</td>
</tr>
<tr>
<td>PO₄⁻ (mg/l)</td>
<td>1.60 ± 0.6</td>
<td>0.88 ± 0.2</td>
</tr>
<tr>
<td>NH₄⁺ (mg/l)</td>
<td>2.95 ± 1.7</td>
<td>1.53 ± 1.6</td>
</tr>
<tr>
<td>Cl⁻ (mg/l)</td>
<td>3.31 ± 1.7</td>
<td>1.9 ± 0.8</td>
</tr>
</tbody>
</table>

There is a significant decrease in the turbidity.
Figure 2: Percentage removal of the chemical content of the greywater after treatment with the Fly Ash/Lime Filter Tower treatment system to check the efficiency of the system with respect to the sites.
Soil Analysis

Table 1: Soil analysis of the initial samples (untreated) and treated samples (irrigated with greywater treated using the FLFT system over a period of time. (Grahamstown East)

<table>
<thead>
<tr>
<th></th>
<th>Fingo</th>
<th>Extension 1</th>
<th>Extension 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>After</td>
<td>Initial</td>
</tr>
<tr>
<td>pH</td>
<td>6.50±0.3</td>
<td>7.53±0.16</td>
<td>5.76±0.02</td>
</tr>
<tr>
<td>Bulk density (g/cm³)</td>
<td>0.79±0.01</td>
<td>0.81±0.12</td>
<td>0.84±0.01</td>
</tr>
<tr>
<td>Particle size density (g/cm³)</td>
<td>2.10±0.1</td>
<td>2.11±0.03</td>
<td>2.2±0.2</td>
</tr>
<tr>
<td>Loss on ignition (%)</td>
<td>10.81±0.02</td>
<td>13.95±1.32</td>
<td>11.33±0.03</td>
</tr>
</tbody>
</table>
Table 2: Soil analysis of the initial samples (untreated) and treated samples (irrigated with greywater treated using the FLFT system over a period of time (Grahamstown West).

<table>
<thead>
<tr>
<th></th>
<th>Town 1</th>
<th></th>
<th>Town 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>After</td>
<td>Initial</td>
<td>After</td>
</tr>
<tr>
<td>pH</td>
<td>6.60±0.04</td>
<td>7.38±0.14</td>
<td>6.13±0.02</td>
<td>7.31±0.20</td>
</tr>
<tr>
<td>Bulk density (g/cm³)</td>
<td>0.15±0.002</td>
<td>0.75±0.02</td>
<td>0.116±0.004</td>
<td>0.89±0.03</td>
</tr>
<tr>
<td>Particle size density(g/cm³)</td>
<td>2.48±0.02</td>
<td>2.23±0.06</td>
<td>2.31±0.1</td>
<td>2.27±0.06</td>
</tr>
<tr>
<td>Loss on ignition (%)</td>
<td>13.05±0.04</td>
<td>14.52±3.79</td>
<td>13.89±0.02</td>
<td>15.33±1.19</td>
</tr>
</tbody>
</table>
Soil Analysis

Table 2: Metal analysis of soil after irrigation with greywater from the Fly Ash/Lime Filter Tower.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Mn</th>
<th>Cu</th>
<th>Pb</th>
<th>Cd</th>
<th>Mg</th>
<th>K</th>
<th>Al</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fingo</td>
<td>8.4</td>
<td>0.63</td>
<td>3.22</td>
<td>0.0</td>
<td>75.18</td>
<td>45.34</td>
<td>142.70</td>
<td>133.90</td>
</tr>
<tr>
<td>Ext 1</td>
<td>20.60</td>
<td>0.73</td>
<td>2.10</td>
<td>0.0</td>
<td>31.38</td>
<td>25.18</td>
<td>139.52</td>
<td>182.80</td>
</tr>
<tr>
<td>Ext 9</td>
<td>32.30</td>
<td>1.12</td>
<td>2.29</td>
<td>0.0</td>
<td>41.48</td>
<td>71.00</td>
<td>149.02</td>
<td>222.24</td>
</tr>
<tr>
<td>Town 1</td>
<td>18.59</td>
<td>0.41</td>
<td>0.40</td>
<td>0.0</td>
<td>34.20</td>
<td>31.29</td>
<td>168.15</td>
<td>207.00</td>
</tr>
<tr>
<td>Town 2</td>
<td>18.69</td>
<td>0.42</td>
<td>0.0</td>
<td>0.0</td>
<td>82.99</td>
<td>23.02</td>
<td>134.20</td>
<td>174.22</td>
</tr>
</tbody>
</table>

Samples were analysed using ICP/OES
Water and Plant samples
Conclusion

• The project was part of a civic engagement to address the community’s urgent needs.
 – food security.
 – Improvement of sanitation.

• Aimed at the development of a socially responsive biotechnology and healthcare professional.

• Decrease in the concentration of the tested parameters: COD, turbidity and pH.

• Decrease in pH: Water hyacinth incorporated into the tower.

• The FLFT was efficient:
 – producing an effluent compliant with greywater quality guidelines in South Africa.
Acknowledgements

• Dr N. Ngqwala.
• Dr R. Tandlich.
• Dr B. Zuma.
• Environmental Health and Biotechnology Research Group.
• Faculty of Pharmacy – Rhodes University.
• Biotechnology Innovation Centre – Rhodes University.
• Trisha Mpofu - Galela Amanzi.
• National Research Foundation.
• Ada and Bertie Levenstein Scholarship.

4. Friedler, E and Hadari (2005), Economic feasibility of on-site greywater reuse in multi-storey buildings, Desalination, 190: 221-254

22. Tandlich, R; Zuma, B.M; Whittington-Jones, K.J and Burgess, J, (2009), Mulch Tower treatment system Part II: Destructive testing and effluent treatment, Desalination, 242: 57-69

27. Zuma. B.M; Tandlich, R; Whittinhton-Jones, K.J and Burgess, J (2009), Mulch Tower treatment system Part 1: Overall performance in greywater treatment, Desalination, 242: 38-56
Thank you