Groundwater Denitrification Using Hydrogen Gas in a New Reactor Type

Razi Epsztein

R. Epsztein, M. Beliavski, S. Tarre, M. Green

Short background

- Nitrate pollution (>10 mg NO3⁻-N/L according to EPA)
- Physicochemical methods (RO, IEX, Electrodialysis)
- Biological denitrification:
 - Nitrate reduction to N₂ gas by denitrifying bacteria under anoxic conditions.
 - Electron donor can be organic or inorganic and must be added to water.
 - Cell Yields are lower for autotrophic bacteria using inorganic electron donors (30% of heterotrophs).

Hydrogenotrophic denitrification

- Why hydrogen?
 - Clean: Low cell yield, no organics addition, no harmful by-products
 - Does not persist in water
 - Cheap
- So why **not**?
 - Mass transfer limitations -> low rates
 - Low hydrogen utilization-> financial asp
 - Hydrogen flammability/explosiveness -> safety

How can hydrogen transfer be increased economically and safely?

One possible solution:

Membrane biofilm reactor (MBFR)
Lee & Rittman, 2002

Denitrification rates $< 1 \text{ g N} / (L_{reactor} x \text{ day})$

Our alternative solution:

A new reactor type with closed headspace!!!

The common misconception of closed headspace denitrifying reactor

Safety problem

Financial problem

N₂ accumulation in closed headspace – does it really happen???

Our proposed system

Main Characteristics:

- Closed Headspace (economic and safe)
- High surface area for bacterial growth
- High mass transfer
- No N₂ accumulation under continuous operation

Proof of concept with GC analysis

Reaching gas-liquid equilibrium

Influent: 25 mg N/L Effluent: 10 mg N/L Total pressure: 3 bars

→H₂

 H_2 utilization > 90% Max. denitrification rate ≈ 9 g $N/(L_{reactor} \cdot d)$

Summary

- Main features of the pressurized reactor:
 - High H₂ utilization (>90%)
 - Safe operation
 - High denitrification rates (up to 9 gN/[L_{reactor} x day])
- Competitive alternative to existing technologies due to simplicity and higher rates.
- Future improvements: increasing H₂ utilization, treatment of water with high nitrate concentration

Thank you!