Landfill leachate treatment by chemical precipitation, carbonation, and phytoremediation fine-tuning

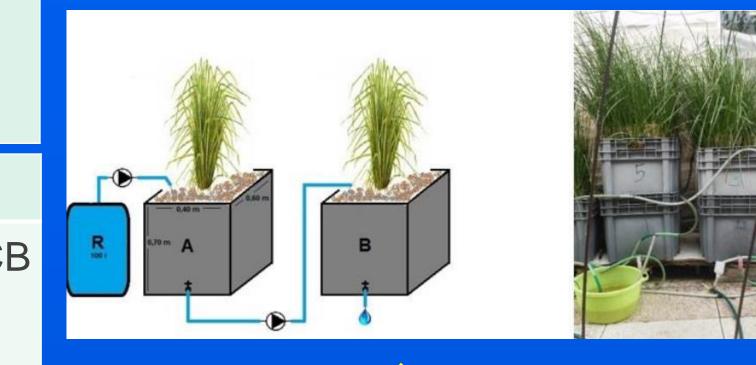
M. Ramalho¹, T. Jovanović¹, A. Afonso^{1,2}, A. Baía^{2,3}, A. Lopes^{2,3}, A. Fernandes^{2,3}, A. Almeida^{1,2}, F. Carvalho^{1,2}

¹Department of Technology and Applied Sciences, School of Agriculture, Polytechnic Institute of Beja, Portugal ²FibEnTech/UBI Research Unit, Universidade da Beira Interior, Covilhã, Portugal ³Department of Chemistry, Universidade da Beira Interior, Covilhã, Portugal Presenting author email: annabelf@ubi.pt

Introduction

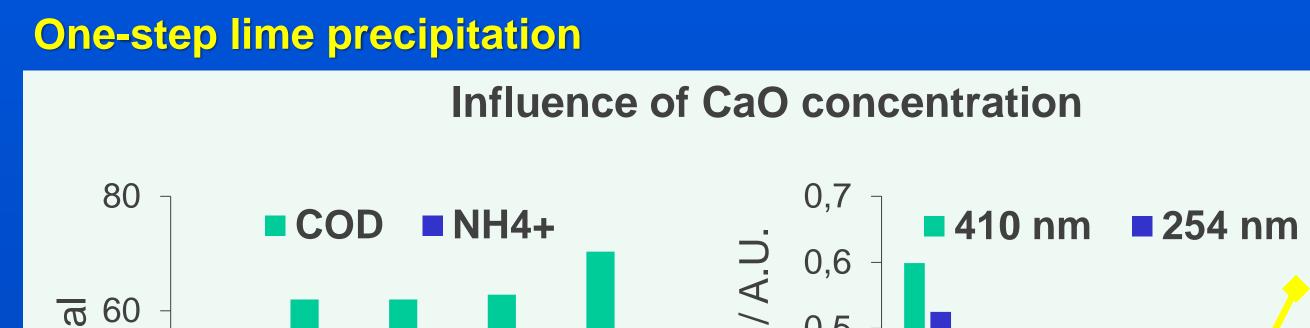
The high organic and inorganic loads of the

Methodology

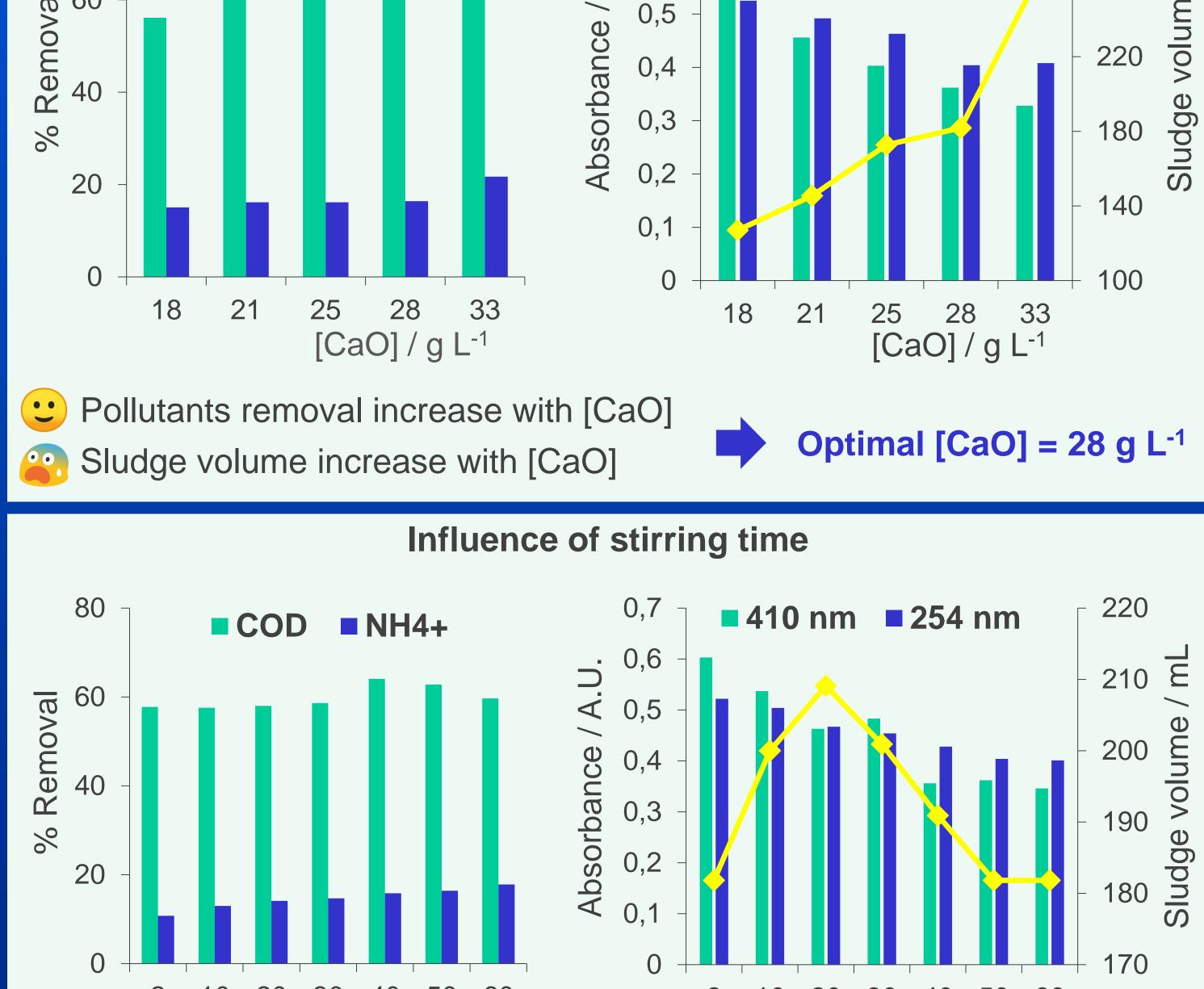

The SLL samples were treated by OSLP, CB and Phyt,

leachates obtained from sanitary landfilling of municipal solid wastes pose a huge challenge in the search for efficient, cost effective and environmental friendly treatments. The objective of this work was to study an integrated solution of several treatment technologies – one-step lime precipitation (OSLP), carbonation (CB) and phytoremediation (Phyt) – to treat a sanitary landfill leachate (SLL), providing a simple, effective, and economically attractive solution for SLL treatment, without harmful effects to the environment and contributing to CO_2 mitigation and lower greenhouse gases.

in two different treatment sequences.


OSLP	CB by atmospheric CO ₂			
Raw SLL	Supernatant from optimized OSLP			
[CaO]: 18, 21, 25, 28,	Left at outdoor atmosphere			
33 g L ⁻¹ *	Exposure time: 32 days			
Stirring speed: 300 rpm	Phyt with Vetiveria zizanioides			
Stirring time: 2, 10, 20,				
30,40, 50, 60 min	Supernatant from OSLP or OSLP+CI			
Sedimentation time: 2 h	Samples diluted with tap water (1:4)			
Concentrations obtained from the addition	Two vertical flow beds in series			
of different volumes of a 200 g L ⁻¹ CaO	Applied hydraulic load: 90 L m ⁻² d ⁻¹			

→ OSLP → Phyt →


Results & Discussion

260

Samples characterization

	Parameter		Raw	SLL	After OSLP	After OS	LP+CB	
	COD / g O ₂ L ⁻¹		1.33		0.46	0.47		
	Ammonia nitrogen / mg N L ⁻¹		1060		889	< 0.1		
	Kjeldhal nitrogen / mg N L ⁻¹		1201		938	46		
	Total hardness / g CaCO ₃ L ⁻¹		0.9		0.5	< 0.0001		
	Total alkalinity / g CaCO ₃ L ⁻¹		8.4		7.5	4.5		
	Abs - 254 nm		> 3		0.41	0.16		
	Abs - 410 nm		1.11		0.37	0.14		
	рН		8.13		12.5	11.	5	
	Conductivity / mS cm ⁻¹		19.7		23.1	15.0		
	Iron / mg Fe L ⁻¹		16.46		0.25	0.02		
	Sludge characterization							
	Parameter	OSLP	СВ	Pa	arameter	OSLP	СВ	
	Quantity / g L ⁻¹	27.8	1.09	Organic matter / %		10.9	14.9	
	рН	12.4	10.0	Urea / %		0.04	0.12	
	Conductivity / mS cm ⁻¹	28.5	61.5	Kjeldhal nit	trogen / g N kg ⁻¹	1.96	1.85	
	Dry solids / %	97.9	96.5	Organic nit	rogen / mg N kg ⁻¹	0.15	0.79	
	Humidity / %	2.1	3.5	Iron / mg F	e L ⁻¹	4.89	_	

2 10 20 30 40 50 60 Stirring time / min 2 10 20 30 40 50 60 Stirring time / min

NH₄⁺ and Abs_{254 nm} decrease regularly with stirring time
COD and Abs_{410 nm} present the highest removals for 40 min stirring time
Sludge volume presents a maximum at 20 min and a minimum at 50 min

Optimal stirring time = 40 min

Conclusions

OSPL combined with CB through atmospheric CO₂ leads to the complete removal of ammonia nitrogen and hardness and allows considerable reductions in COD, aromatic content, metals and color, showing to be a simple, effective and economically attractive process for SLL treatment, without harmful effects to the environment and contributing to lower greenhouse gases and CO₂ mitigation.

Paramete	ſ	Phyt after OSLP	Phyt after OSLP+CB		
рН		4.3	6.8		
Conductivi	ty / mS cm ⁻¹	7.3	7.4		
Dissolved	Dissolved oxygen / mg O ₂ L ⁻¹		4.6		
Removals	- COD / g O ₂ m ⁻² d ⁻¹	4.9	6.2		
	- Ammonia nitrogen / g N m ⁻² d ⁻¹	5.0	*		
	- Kjeldhal nitrogen / g N m ⁻² d ⁻¹	6.8	*		
* Already remov	red in the CB step				

- Generated sludges characteristics allow its recovery in the landfill itself, eliminating the need for transport and dehydration, reducing the associated carbon footprint.
- Pre-treated SLL by OSLP or OSLP+CB is suitable for phytoremediation with Vetiveria zizanioides (with OSLP+CB samples attaining the best results), allowing the use of the green economy concept, since the biomass is reusable.

Acknowledgements

Fundação para a Ciência e a Tecnologia, FCT, for project UIDB/00195/2020, grant 2020.04822.BD (A. Afonso) and contract funding (A. Fernandes). UBI-SANTANDER TOTTA for grant awarded to A. Baía.