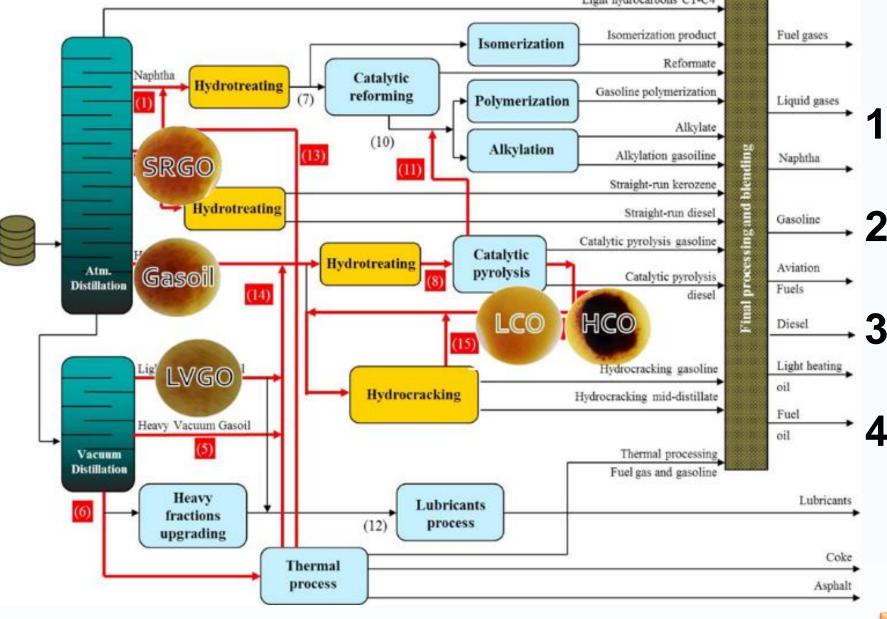
IMPACT OF HYDROGENATION ON MISCIBILITY OF FAST PYROLYSIS BIO-OIL WITH REFINERY FRACTIONS TOWARDS BIO-OIL REFINERY INTEGRATION

A. Dimitriadis¹, D. Liakos^{1,2}, U. Pfisterer³, M. Moustaka-Gouni⁴, S. Bezergianni¹

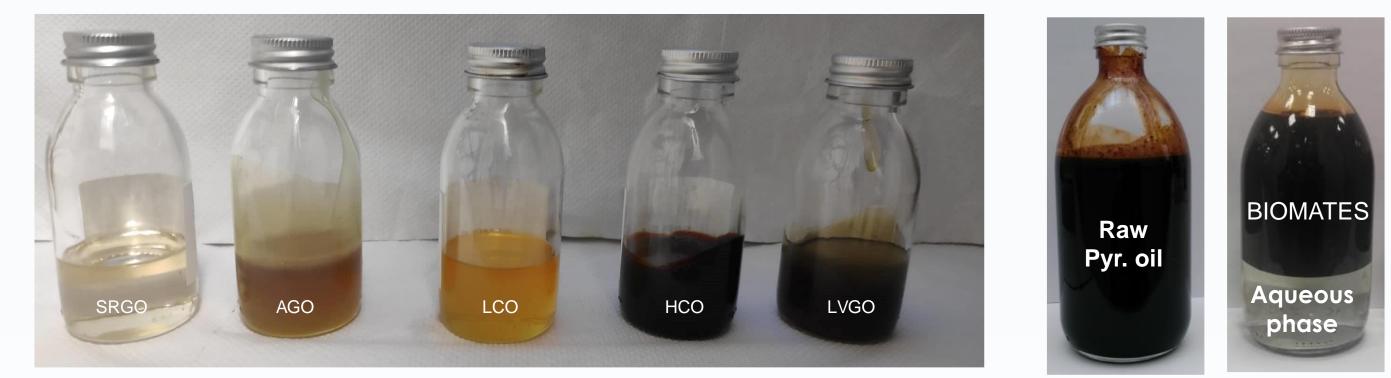
¹Center for Research & Technology Hellas (CERTH), Chemical Process & Energy Resources Institute (CPERI), Thessaloniki, Greece ²Aristotle University of Thessaloniki (AUTH) Greece, Department of Chemistry

³BP Europa SE, Bochum, Germany

⁴Aristotle University of Thessaloniki (AUTH) Greece, School of Biology

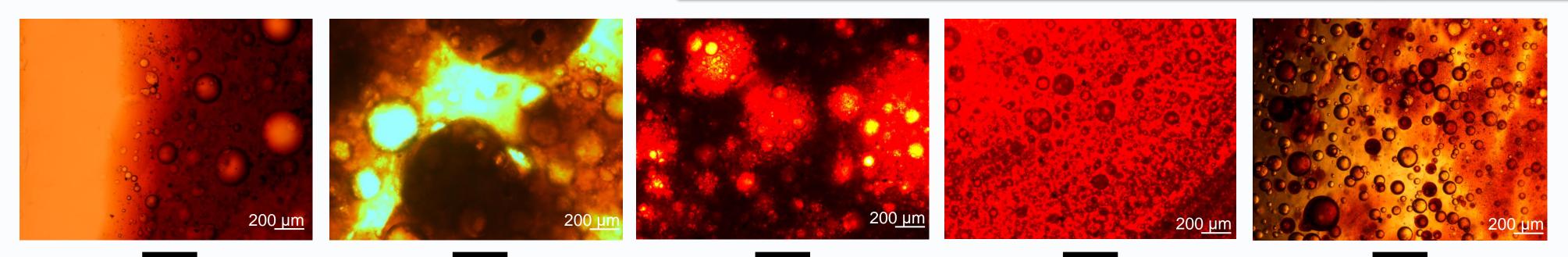

 \succ Investigation of compatibility of raw and hydrotreated pyrolysis oil with potential refinery entry points in terms of miscibility.

Methodology


Feedstock Properties

	Units	Pyr. oil	BIOMATES	SRGO	GO	LCO	нсо	LVGO
Density (288K)	g/cm ³	1.138	0.918	0.846	0.867	0.943	1.081	0.896
Viscosity (313K)	mm²/s	106.1	7.54	3.157	16.09	2.193	239.4	17.49
Surface Tension	mN/m	36.4	32.1	27.6	29.4	30.9	34.2	30.7
С	wt%	57.73	85.85	85.53	85.87	88.95	89.43	85.91
Н	wt%	8.23	11.84	13.98	13.5	9.82	8.17	12.99
Ν	wt%	0.74	0.87	0.19	0.25	0.11	0.24	0.20
S	wt%	0.047	0.039	0.18	0.35	0.9	1.87	0.46
0	wt%	33.25	1.40	0.12	0.03	0.22	0.29	0.44
Water	mg/kg	400,000	480	50	55	105	75	45
Refractive index	-	1.5304	1.5000	1.4697	1.4940	1.5460	1.5720	1.4962
Oxidation stability	min	16.1	35.3	1039.8	1011.2	239.0	169.5	1028.2

Raw Pyrolysis oil and BIOMATES were mixed to ~30vol.% with petroleum refinery intermediates:



- 1) **Properties**
- 2) Microscopic observation
- 3) Dynamic interfacial tension
- 4) Oxidation stability

Results & Discussion

HDO

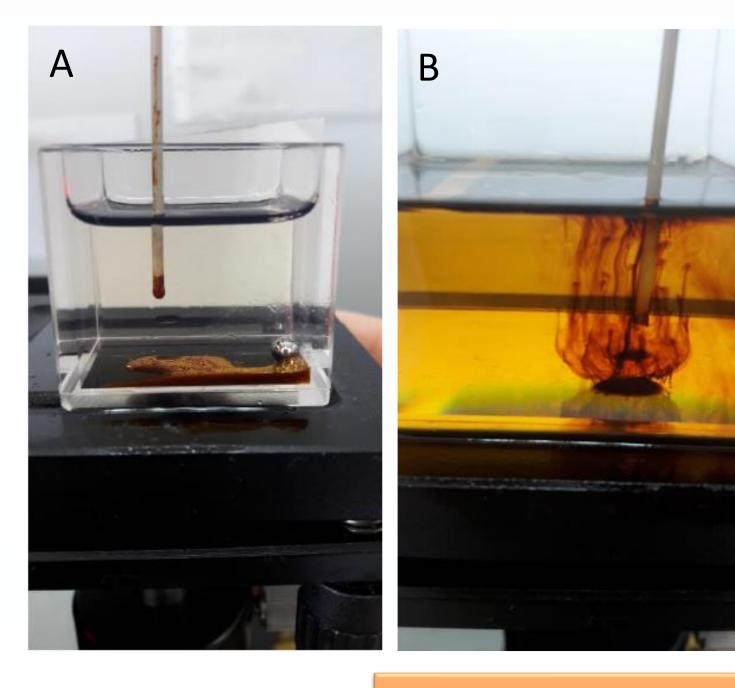
Raw Pyrolysis oil \rightarrow not miscible with fractions

Presence of distinct phases due to high water content (high polarity).

Different shape and size in each blend based on petroleum fractions organic compounds.

				₹ ¢
200 <u>µm</u>	200 <u>μm</u>	200 <u>μm</u>	200 <u>μm</u>	200 <u>μm</u>
Pyrolysis oil + SRGO	Pyrolysis oil + Gas-oil	Pyrolysis oil + LCO	Pyrolysis oil + HCO	Pyrolysis oil + LVGO

BIOMATES \rightarrow miscible with all fractions


Perspicuous blends with no distinction between phases in mixtures with all petroleum fractions. Similar results in all blends with petroleum fractions.

A: Raw Pyrolysis oil is not miscible with petroleum fractions due to zero mass transfer, absence of cloudy effect and change of color in sample.

B: BIOMATES is **miscible** with petroleum fractions due to one phase liquid after some minutes and due to zero interfacial tension upgraded bio-oil and between petroleum samples.

BIOMATES 30vol.% +	Units	SRGO	GO	LCO	HCO	LVGO
Density (288K)	g/cm ³	0.861	0.896	0.935	1.012	0.903
Viscosity (313K)	mm²/s	3.168	12.020	2.954	25.85	12.94
Surface Tension	mN/m	28.2	29.4	30.6	33.1	30.9
С	wt%	85.71	85.91	88.22	88.54	86.03
Н	wt%	13.22	12.93	10.28	9.18	12.71
Ν	wt%	0.41	0.45	0.35	0.42	0.42
S	wt%	0.14	0.26	0.66	1.39	0.33
0	wt%	0.52	0.52	0.49	0.47	0.51
Water	mg/kg	180	185	220	200	175
Refractive index	-	1.475	1.494	1.532	1.573	1.496
Oxidation	min	263.4	232.2	109.8	83.8	247.6

HDO

HDO _

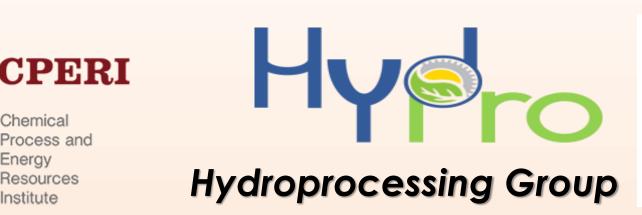
stability	
-----------	--

- > Blends with 30vol.% BIOMATES favor flow properties of some fractions (GO, HCO, LVGO).
- > Heavy fractions (LCO, HCO) tend to reduce density when **BIOMATES** is added.
- > Elemental composition is not altered significantly with the addition of BIOMATES (low oxygen, high carbon and hydrogen content).

Conclusions

- Addition of BIOMATES in petroleum fractions leads to miscible mixtures. expanding possible candidates for co-processing.
- > A hydrotreatment step is essential for stabilizing raw Pyrolysis oil and make it more compatible with petroleum intermediate streams.

Acknowledgements


Acknowledgements are expressed to BioMates project (European Union's Horizon 2020 program) for financing the research.

23-26 JUNE

