HYDROTHERMAL LIQUEFACTION OF THESSALY'S AGRICULTURAL WASTES TARGETING HIGH QUALITY BIO-CRUDE PRODUCTION

D. Liakos^{1,2}, A. Dimitriadis¹, V. Dagonikou¹, K. Triantafyllidis², A. Kokkalis³, S. Bezergianni¹

¹Center for Research & Technology Hellas (CERTH), Chemical Process & Energy Resources Institute (CPERI), Thessaloniki, Greece ²Aristotle University of Thessaloniki (AUTH) Greece, Department of Chemistry ³Green Innovative Company (GRINCO), Larissa, Greece

Objectives

- > Optimization of agricultural wastes upgrading via hydrothermal liquefaction (HTL) for maximum bio-crude production.
- > Valorization of crude glycerol (biodiesel production by-product) as co-feed.
- > Examination of HTL main parameters (temperature, reaction time, biomass/glycerol ratio) effect in bio-crude yield and quality.

Feedstock Properties

	Units	Olive Tree Branches	Wheat Straw
Cellulose	wt%*	36.45	33.08
Hemicellulose	wt%*	15.10	25.76
Lignin	wt%*	31.45	35.22
Ash	wt%*	3.01	3.04
Moisture	wt%	7.00	7.23

^{*}Based on dry mass

Methodology

- ➤ Temperature: 300° 420 °C
- ➤ Reaction Time: 15 60 min
- ➤ Biomass / glycerol : 1/0 1/1

HTL

Gas products

PRODUCTS

Aqueous phase

➤ Bio-crude oil

> Hydrochar

Results & Discussion

NOVELTY GOALS:

- 1) Comparison between crop residues and woody biomass biocrude yield.
- 2) Investigation of minerals proportion transferred to hydrochar during HTL.
- 3) Crude glycerol valorization in biomass HTL process towards liquid fuels.

EXPECTED RESULTS (Literature)

- > Enhanced biocrude yield in high subcritical temperature Lower quality.
- Higher hydrochar yield due to repolymerization at high temperature.

Dichloromethane

extraction

- ➤ Supercritical (SC) conditions → easier liquefaction → Boosted biocrude yield.
- ➤ Crude Glycerol agricultural biomass → Synergistic Effect → Higher oil yield. Lignin depolymerization to small oligomers – monomers (especially at SC HTL)

BIO-CRUDE OIL PROPERTIES EXPECTATIONS

- Low heteroatom content (Oxygen Nitrogen)
- ➤ High H/C ratio → High proportion of hydrocarbons → Higher HHV**
- Chemical Composition:
 - Acids
 - Furans
 - Ketones
 - Phenolics
 - Oxygenated Aromatics

** Compared to pyrolysis bio-oil

6 – 10 Carbon atoms $(C_6 - C_{10})$ derived from carbohydrates and lignin

Conclusions

Study is expected to assist in:

- Understanding HTL reactions.
- 2) Behavioral comparison between two types of residual biomass HTL.
- 3) Optimizing HTL process (oil yield) Valorization of biodiesel industry byproducts.

References

- 1. A. Dimitriadis, S. Bezergianni (2017), «Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review», Renewable and Sustainable Energy reviews 68, 113-125
- 2. T.H. Pedersen, L. Jasiunas, L. Casamassima, S. Singh et al. (2015), «Synergistic hydrothermal coliquefaction of crude glycerol and aspen wood», Energy Conversion and Management 106, 886-891

