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Abstract 

This paper presents an approach to model and optimise the feedstock flowrate of an anaerobic digestion (AD) 
cooking system by simultaneously minimising the volume of flared biogas, the unmet cooking demand and the 
energy cost. As research has typically focused on optimising the digester and its associated parameters to 
maximise the biogas yield; this research examines how different objectives can influence how one might want to 
control the system. The system is initially modelled and validated with measured data and an optimisation 
algorithm is then applied to control the feedstock flow rate. The results show that the performance of first order 
AD models, in predicting the biogas yield, only differs from measured data by 9% and that by controlling the 
feeding rate, the amount of flared biogas and unmet cooking demand can be reduced by 100% and approximately 
87%, respectively when they are the only objective functions considered. If the energy cost is also added an 
objective function, then more precise control of feeding rate is needed to ensure that all three conflicting objectives 
are equally minimised. This result highlights the importance of using the correct feeding rate in the system and 
considering the overall system during optimisation as producing more biogas might not result in the most cost-
effective system. 

Keywords: feedstock flowrate, case study, measured data, multi-objective optimisation 

 

1. Introduction 

Research on mathematical optimisation of anaerobic digestion (AD) systems has typically been focused on the 
design and optimisation of the digester tank to maximise the methane yield. Furthermore, authors have either 
created predictive models using measured data, used experimental results or the mechanistic anaerobic digestion 
model 1 (ADM1) to determine biogas yield from the digester. Huang et al. [1], Akbaş et al. [2], Enitan et al. [3], 
Balaji et al. [4] and García-Diéguez et al. [5] all looked at similar objective functions of maximising the biogas 
yield and/or the methane content in biogas and minimising the effluent chemical oxygen demand (COD). They 
found optimal values for digester temperature, pH, hydraulic retention time (HRT), feedstock flowrate and 
carbon/nitrogen (C/N) ratio. García-Gen et al. [6] used linear programming to optimise the substrate blend going 
into the digester with the aim of maximising the methane yield. To determine the biogas yield, some of these 
authors used predictive models, some experimental results and some ADM1 however, the limitation of these 
methods are that predictive models rely on having measured data, experimental results are not accurate to predict 
real-world digester performance and ADM1 is complex to use as it requires values for many unknown coefficients. 
Furthermore, the authors did not consider any other components in the system, apart from the digester, i.e. pre 
and post treatment technologies, digester type, feedstock(s) and operational conditions and optimised only the 
technical performance of the digester. To obtain an optimised AD system, all its components need to be 
simultaneously selected and optimised. Nixon [7] states the importance of optimising an AD system both 
technically and economically to ensure that an overall efficient system is achieved.  

To control AD systems and consider both the technical and economic performance, authors defined system 
boundaries to include pre and post treatment technologies, feedstock blends and digester operational variables. 
They defined net present value (NPV), bio-methane production and green degree as objective functions. Some 
authors also conducted broader scoped studies where they did not model the technologies in detail. Yan et al. [8] 
and Li et al. [9] aimed to find the optimal co-digestion ratio of the feedstocks used (chicken manure (CM) with 
rice straw (RS), wheat straw (WS) and corn stalk (CS)) and biogas to bio-methane upgrading technology when 
performing multi-objective optimisation of an existing AD system. With respect to the digester, Yan et al. [8]  
optimised the temperature and Li et al. [9] optimised the heat supply technologies. To determine the amount of 
biogas produced, the authors used correlations, found in literature, between the rate of methane production and 
temperature for the different feedstock co-digestion ratios used. The limitation of this method to determine the 
biogas yield is that, the performance of the digester is dependent not only on the temperature but also other 
operational variables, such as the hydraulic retention time (HRT), pressure, pH, mixing and organic loading rate 
(OLR) [10]. Furthermore, for existing AD systems the cost involved in making modifications to the system need 
to be considered as that can influence the optimised solution. Mavrotas et al., [11] found optimal combination of 
technologies that can be used to process the types of waste (i.e. glass, plastic, and metals) found in municipal solid 
waste (MSW). Similarly, Balaman and Selim [12] looked at maximised the profit of the biomass supply chain, 
defining system boundaries to include biomass transportation, storage, energy generation and fertilizer disposal. 
However, these broader scope studies did not consider each of the individual components in detail and their effect 
on the optimised result. Hence, the use of simple, first order AD models with optimisation of AD systems, for a 
number of conflicting objectives needs to be investigated. 
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This paper presents an approach to optimise the feedstock flowrate into an existing AD system with the aim of 
investigating how first order AD models can be used with plant data to improve system control by balancing 
conflicting objectives. The results will provide insightful details for designers, engineers, and operators of these 
systems on how they can use multi-objective optimisation to enhance system performance by controlling the 
feedstock input.  

 

2. Methodology 

Two optimisation scenarios are considered; 1) only flared biogas and unmet demand are minimised 2) the energy 
cost of the system is also minimised along with flaring and unmet demand.  

The biogas yield from the digester is determined using the modified Gompertz model as it has been found to 
perform better than other kinetic AD models. This is due to it being an ‘S’ shaped curve and hence, being able to 
model the lag phase of microbial growth in digesters well [13]. Coefficients for the model are taken from Nguyen 
et al. [14] study as the properties of their feedstock were similar to the feedstock used in the case study system. 
The predicted biogas yields were then compared with measured data from the plant for the month of July and 
December 2017 to determine the accuracy of the model. All the other components in the case study system such 
as the shredder, H2S scrubber and H2O condenser were also modelled so that their energy costs, in relation to the 
amount of feedstock added, could be determined.  

The optimisation problem was set-up in Python and non-dominated sorting genetic algorithm (NSGA-II), from 
Python’s multi-objective optimisation library ‘pymoo’, was used. The population size and number of generations 
were both set to 100. 

 

3. Case Study System 

Plant performance data is taken from a one tonne per day anaerobic digestion facility in Bangalore, India. The 
facility handles food waste from the onsite kitchen, consisting of preparation waste (uncut vegetables etc.) and 
cooked food waste (rice, vegetable peels, chapatti, curries etc.). It was estimated that approximately 162 m3 of 
biogas is estimated to be produced from the digester for every tonne of waste added. 

The key parameters of the digestion process in the case study plant are shown in Table 1. 

Table 1 Key operating parameters of the case study anaerobic digestion (AD) facility. 

Parameter Description/Value 

Feedstock type Kitchen waste (uncut and leftover 
vegetables, curry, bread etc.) 

Feedstock Volatile Solids Content (VS) 14.25% 

Hydraulic retention time (HRT) 28 days 
Temperature (mesophilic) 38 °C 

Data recorded from the plant on a daily basis includes the amount of feedstock added (kg), the biogas stored in 
the twin-balloon system (m3), the amount of biogas flared (m3) and the biogas consumption (m3) for cooking. Due 
to the location of the measuring points (Figure 1), the total biogas produced (m3) from the plant in a day was 
determined by adding the biogas stored in the balloons and the amount flared. Data was available for the months 
of March, July and December 2017. It is assumed that a back-up Liquefied Petroleum Gas (LPG) connection 
exists for any unmet demand.  
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Fig. 1 Set-up of the case study anaerobic digestion (AD) system showing the components and measuring points. 

 

4. Model Formulation 
4.1. Component Models 

4.1.1. Shredder 

Equation 1 was used to determine the total specific energy consumption of the shredder, as a function of screen 
size, flow rate and motor speed [15].  

Eୱ୦୰ୣୢୢୣ୰ ൌ 20.3836 െ ሺ5.1879 ൈ 10ିଵ ൈ Dሻ ൈ ሺ8.9192 ൈ Fሻ  ሺ1.3455 ൈ 10ିଵ ൈ Nሻ
െ ሺ2.4206 ൈ 10ିଵ ൈ D ൈ Fሻ െ ሺ2.4531 ൈ 10ିଵ ൈ F ൈ Nሻ
 ሺ3.9630 ൈ 10ିସ ൈ D ൈ Nሻ  ሺ2.2116 ൈ 10ିଶ ൈ Dଶሻ  ሺ2.3247 ൈ Fଶሻ 

(1) 

where, Eୱ୦୰ୣୢୢୣ୰ is the total specific energy consumption of the shredder (kWh/tonne), D is the screen size (mm), 
F is the feedstock flowrate (kg/min) and N is the motor speed (rpm).  

The total energy consumption of the shredder (Eୱ୦୰ୣୢ) in a day was determined by multiplying the feedstock 
flowrate into the system with the total specific energy consumption. 

4.1.2. Digester 

The equation used to determine the energy needed to heat the feedstock going into the digester is shown below. 

E୦ୣୟ୲ ൌ m ൈ ൫c୵ሺ1 െ TSሻ  cୗሺTSሻ൯ ൈ ሺTୈ െ Tሻ (2) 

where, E୦ୣୟ୲ is the energy needed to heat the digester (kJ/day),	c୵ and cୗ are the specific heat capacity of water 
and substrate, respectively (kJ/kgK), m is the mass flow rate of feedstock going in the digester (kg/day), TS is 
the total solids content in the feedstock (%) and Tୈ and T are the digestion and inlet feedstock temperatures (°C), 
respectively. 

Equation 3 is used to determine the temperature of the water required in the coil so that it can provide the thermal 
energy needed to heat the feedstock. 

Twଶ ൌ
E୦ୣୟ୲

2πrୡhୡ ൈ h୵ୟ୲ୣ୰
 T 

(3) 

where,	Twଶ is the temperature of the water in the coil (°C), rୡ and hୡ are the radius and length of the coil (m) and 
h୵ୟ୲ୣ୰ is the convention heat transfer coefficient of flowing water (W/m2K)  

The electrical energy needed to heat the water to the required temperature for heating the digester was determined 
using Equation 4. 

E୦ୣୟ୲୵ୟ୲ୣ୰ 	ൌ m୵ ൈ c୵ ൈ ሺTwଶ െ	Twଵሻ (4) 

where,	E୦ୣୟ୲୵ୟ୲ୣ୰ is the electrical energy needed to heat a fixed mass of water that can in the coil (kJ/day), m୵ is 
the mass of water in the tank heated by electricity (kg/day) and Twଵ is the initial temperature of water (°C). 
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The heat loss from the digester was determined by assuming that the digester was cylindrical in shape and that 
heat loss occurred from the top, bottom and sides of the digester to free flowing air, as the digester stood on legs. 
As only the volume of the digester was known, it was assumed that its height was equal to twice the radius. 

E୪୭ୱୱ ൌ ሺ2πrୢhୢ  2πrୢ
ଶሻ ൈ hୟ୧୰ ൈ ሺTୈ െ Tୟ୫ୠሻ (5) 

 
where, E୪୭ୱୱ is the energy needed loss the ambient air from the digester (kJ/day), rୢ and hୢ are the radius and 
height of the digester (m), respectively, hୟ୧୰ is the convention heat transfer coefficient of free air (W/m2K) and 
Tୟ୫ୠ is ambient temperature of air (°C). 

The amount of biogas produced from the digester was determined using the modified Gompertz model. 

Gሺtሻ ൌ 	G୭ ൈ 	exp	 ൜െexp 
R୫ୟ୶	ൈୣ
G

൨ ሺλ െ tሻ  1ൠ 
(6) 

where, Gሺtሻ is the biogas yield at hydraulic retention time t (m3/kgVS), G is the maximum biogas yield 
(m3/kgVS), R୫ୟ୶ is the maximum biogas production rate (m3/kgVS day), λ is the duration of lag phase (day) and 
t is the hydraulic retention time (days).    

Equation 7 was then used to determine the daily predicted biogas yield. 

V_ ൌ m ൈ VS ൈ Gሺtሻ (7) 

where, V_ is the biogas produced (m3/day), VS is the volatile solids content of the feedstock and Gሺtሻ is the 
biogas yield (m3/kgVS) at HRT of 28 days. 

The predicted biogas yield for July and December 2017 was compared with measured data and the performance 
of the model was accessed. 

4.1.3. Hydrogen Sulphide Scrubber 

The mass of hydrogen sulphide (H2S) that has to be removed by the scrubber in a day was determined using 
Equation 8. 

mୌଶୗ ൌ
ሺHଶS୧୬ െ HଶS୭୳୲ሻ ൈ V_

1000
 

(8) 

where,	mୌଶୗ is the mass of the H2S that needs to be removed (kg/day), HଶS୧୬ and HଶS୭୳୲ are concentrations of 
H2S in the biogas entering and leaving the digester (ppm). 

The removal efficiency of the adsorbent was used to determine mass of adsorbent required in a day to remove the 
H2S. 

mୟୢୱ୰ୠ ൌ
mୌଶୗ

ηୟୠୱ୰ୠ
 (9) 

where,	mୟୢୱ୰ୠ is the mass of adsorbent required (kg/day) and ηୟୠୱ୰ୠ is the removal efficiency of the adsorbent 
(%). 

The cost associated with scrubbing off the required H2S (Cୌଶୗ) was determined by multiplying the mass of 
adsorbent required with the cost of a kilogram of adsorbent (Cୟୠୱ୰ୠሻ. 

4.1.4. Water Condenser 

Equation 10 was used to determine the mass of water that needs to be removed from the biogas. 

mୌଶ ൌ V_ ൈ	Bୌଶ ൈ ρୌଶ (10) 

where,	mୌଶ is the mass of water in the biogas V_ (kg/day), Bୌଶ is the water content in biogas (%) and ρୌଶ 
is the density of water (kg/m3). 

By assuming that the biogas entering the scrubber is at atmospheric pressure, the saturation vapour pressure of 
the biogas is determined by multiplying its pressure with the water content in the biogas (%). The saturation 
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vapour pressure (PS) against temperature table is used to determine the dew point temperature of water (°C) at 
that pressure.  

The energy needed to cool the biogas to water’s dew point temperature is then determined. 

Eୡ୭୬ୢୣ୬ୱୣ୰ ൌ mୌଶ ൈ c୵ ൈ ሺTୈ െ	Tୢ ୣ୵ሻ (11) 

where,	Eୡ୭୬ୢୣ୬ୱୣ୰ is the cooling energy needed to condense the water out of biogas (kg/day) and Tୢ ୣ୵ is the dew 
point temperature of water (°C). 

4.2. Defining the Optimisation Problem 

Equations 12 and 13 show the formulation of the two optimisation problems where 1) only the flared biogas and 
unmet demand are minimised and 2) energy cost is added as a third objective function. The feeding rate was 
optimised for each day of the month based on that day’s cooking demand. The volume of LPG required equals 
the amount of unmet cooking demand. 

Min. V_ (x) 
Min. VLPG (x) 
s.t. 
0 < x < 1000, x	∈ R 

(12) Min. V_ (x) 
Min. VLPG (x) 
Min. CEC (x) 
s.t. 
0 < x < 1000, x	∈ R 

(13) 

where, x is the feedstock flowrate (kg/day), V_ is the volume of biogas flared (m3), VLPG is the volume of LPG 
required (m3) and CEC is the energy cost of the system ($/kgVS). 

4.2.1. System Storage, Flaring and Gas Consumption Logic 

The Flowchart in Figure 2 shows the method used to determine the volume of biogas flared and the volume of 
LPG required to meet any excess biogas required for cooking.  

4.2.2. Energy Cost 

Equation 14 was used to determine the energy cost of the system. 

Cେ ൌ ቌ൭൬Eୱ୦୰ୣୢ 
ሺE୦ୣୟ୲୵ୟ୲ୣ୰  E୪୭ୱୱ  Eୡ୭୬ୢୣ୬ୱୣ୰ሻ

ሺ1000 ൈ 3.6ሻ
൰ ൈ Cୣ୪ୣୡ൱  Cୌଶୗቍ ሺm ൈ VSሻ൘  

(14) 

where, Cେ is the energy cost of the system ($/kgVS), Eୱ୦୰ୣୢ is the energy consumption of the shredder (kWh), 
E୦ୣୟ୲୵ୟ୲ୣ୰ is the energy needed to heat the water in the digester coil (kJ), E୪୭ୱୱ is the heat loss through the digester 
walls (kJ), Eୡ୭୬ୢୣ୬ୱୣ୰ is the energy needed to condense the water out of the biogas (kJ), Cୣ୪ୣୡ is the cost of 
electricity in India ($/kWh), Cୌଶୗ is the cost of removing H2S from biogas ($), m is the flowrate of the feedstock 
(kg/day) and VS is the volatile solids content of the feedstock (%). 
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Fig. 2 Flowchart to determine the balloon level ܸ_ (m3), the volume of biogas flared ܸ_ி (m3) and the volume of LPG required ܸீ  (m3) based on the biogas produced 

ܸ_ (m3) the gas consumption ܸ (m3) and the maximum balloon capacity ܸ_ሺ݉ܽݔ. ሻ (m3).
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Table 2 shows the different inputs used in the model and their associated references. 

Table 2 Model inputs and their associated values and references. 

Parameter Units Value Reference 
Shredder: 
D mm 25  [15] 
N rpm 1440  Case Study Plant Report 
Digester: 
c୵ kJ/kgK 4.2 [16] 
cୗ kJ/kgK 2.16 [17] 
TS % 23 [14] 
VS % 21 [14] 
Tୈ °C 38 Case Study Plant Report 
T °C 30 Assumed 
rୡ m 0.02 Case Study Plant Report  
hୡ m 50 Case Study Plant Report  
h୵ୟ୲ୣ୰ W/m2K 1000 [18] 
Twଵ °C 25 Assumed 
rୢ m 1.798 Case Study Plant Report  
hୟ୧୰ W/m2K 0.265 [19] 
Tୟ୫ୠ °C 25 Assumed 
Gሺtሻ m3/kgVS 0.46 [14] 
G m3/kgVS 1.25 [14] 
R୫ୟ୶ m3/kgVS day 0.023 [14] 
λ days 8.84 [14] 
t days 28 Case Study Plant Report 
H2S Scrubber: 
HଶS୧୬  ppm 323 [20] 
HଶS୭୳୲  ppm 200 Case Study Plant Report 
ηୟୠୱ୰ୠ % 0.2 [21] 
Cୟୠୱ୰ୠ $/kg 0.87 [22] 
H2O Condenser: 
Bୌଶ % 0.05 [23] 
ρୌଶ kg/m3 1000 [24] 
PS mmHg 37.7 [25] 
Tୢ ୣ୵ °C 33 [25] 
Energy Cost:    
Cୣ୪ୣୡ $/kWh 0.111 [26] 
Balloon and Flaring System:    
Vాైሺmax. ሻ m3 84 Case Study Plant Report  
Vాై(day 0) m3 84 Case Study Plant Report  
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5. Results and Discussion 
5.1. Comparison of Predicted Biogas Yield with Measured  

The graph in Figures 3 (a) and (b) compare the predicted biogas yield with the measured data for July and 
December 2017.  

It can be seen from the graphs that the model agrees well with the measured data for December 2017 and for the 
first 10 days of July 2017. However, in July, as the feedstock flowrate is increased the difference between the 
predicted and measured biogas yields increases. This observation highlights that the modified Gompertz model is 
able to predict the biogas yield accurately when the digester loading rate is constant however, as the loading rate 
changes the prediction accuracy decreases.  

Biogas yield from food waste is reported to be around 0.43 m3/kgVS for batch systems handling food waste [27] 
and between 0.415 m3/kgVS and 0.495 m3/kgVS for substrates consisting mainly of carbohydrates and protein by 
[28]. These values give us confidence in the performance of the model. In addition, authors have usually used the 
modified Gompertz model in predicting biogas yields from digesters operating in batch mode [29] [30] [31] and 
not in continuous mode, hence, making it less suitable for use in this case study system. Comparing the model 
performance with measured data for the entire year and not just the two months and getting real-time recordings 
of digester operational variables such as temperature, pressure can help determine what causes the difference 
between the predicted and measured results. Furthermore, suitable yet simple digester models, for continuously 
operated AD systems, need to be researched. At present, since the performance of the model was satisfactory for 
December 2017, it was decided to use this month’s data for further analysis.  

5.2. Model of Current Case Study System 

Graphs in Figure 4 (a) and (b) show the difference between the performance of the AD system with both the 
predicted and measured biogas yields. 

(a) (b) 

Fig. 3 Comparison of the measured biogas yield with the predicted for July (a) and December 2017 (b). 
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When the predicted biogas yield is used (Figure 4 (a)), the demand is predominantly being met by the biogas 
stored in the balloon and flaring occurs only a few days in the month when the balloon is at its maximum capacity. 
On days when the consumption cannot be met by the system, the back-up LPG supply is used to meet any unmet 
demand. When the model simulates the performance of the system with the measured biogas yield values (Figure 
4 (b)), for most days of the month, the system is producing more biogas than that is needed and since the storage 
is already at its maximum capacity, the excess biogas is flared. The energy cost of the system is also higher this 
time since more biogas needs to be cleaned before usage.  

The results highlight the importance of optimising the feedstock input into the system so that the amount of biogas 
produced matches the consumption requirements of the system. This would ensure any flaring is avoided and also 
that minimum fossil fuel backup is required to meet the unmet demand. Higher biogas yields also mean higher 
energy consumption of the system (Figure 4 (b)) as more energy is needed to scrub the H2S and remove water 
vapour from the biogas. If energy consumption of the system increases due to increase in biogas production than 
the extra biogas produced should be used or stored so that it does have to be flared. Flaring makes the system 
extremely inefficient and has a negative impact on the environment [32]. 

5.3. Optimisation of Case Study System 

Figure 5 (a) and (b) show the results of optimisation problems 1 and 2, defined in Equations 12 and 13 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 4 Comparison of the difference in plant performance if predicted biogas yield is used (a) or if measured 
biogas yield is used (b). 

(a) (b) 

Fig. 5 Comparison of the system performance when two objective functions; biogas flared and volume of LPG 
required are minimised (a) and when an additional objective function of minimising the energy cost is also 

added (b). 
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When the objective functions are to simultaneously minimise the amount of biogas flared and the unmet demand, 
the optimiser suggests adding only enough feedstock so that the amount of biogas produced is almost equal to the 
consumption. In Figure 5 (a) that there is almost no flaring on any day of the month and there is only some unmet 
demand towards the end of the month. This is because the balloon was already empty and the cooking demand 
was higher than the amount of biogas being produced. Since the energy cost was not an objective function to be 
minimised in the first optimisation problem, its value fluctuates up and down with the fluctuating feedstock input. 
When the energy cost is added as an objective function to be minimised (Figure 5 (b)), the feedstock input does 
not reduce as much as that would increase the energy cost of the system. Unlike the first optimisation problem, 
the optimiser only alters the feedstock input if the demand is affected for a number of days of the month instead 
of a single day. Due to this, some biogas does get flared in this system. 

The results of the optimisation study highlight the importance of choosing the right objectives functions when 
optimising different parameters in the AD system since, the optimal values of the feeding rate, suggested by the 
optimiser, in optimisation scenario one and two are quite different. In reality, the energy cost of the system needs 
to be included as an objective function as it takes into account the economic performance of the system [8]. 
Furthermore, to evaluate the performance of the optimised system with the current system, the results should be 
assessed over the entire month instead of comparing individual days. 

 

6. Conclusions and Future Work 

This study looked at modelling and validating a case study AD system and optimising its feedstock flowrate, when 
the objectives of minimising the volume of biogas flared, the unmet demand and energy cost of the system were 
set. 

When the predicted biogas yield was compared with measured data, it was found that the model was under 
predicting biogas production and was not able to accurately model it when the feedstock flowrate changed 
abruptly. Hence, even though typical biogas yields from food waste were found to agree with the constants used 
in the modified Gompertz model, a better AD model is needed to determine the biogas yields from continuously 
operated digesters. Furthermore, if available, measured plant data for an entire year will be taken and the model 
performance will be compared against it. If operating parameters such as temperature, pressure are monitored then 
they can provide insight into what happens to the model performance with the feeding rate changes. 

The results from the optimisation scenarios, showed that when the amount of biogas flared and the unmet demand 
are minimised, without taking the energy cost of the system into account, the optimiser reduces the feedstock 
input so that the amount of biogas produced is almost equal to the consumption. When the third objective of 
minimising the energy cost of the system is considered, the model keeps the feedstock flowrate more consistent 
than the previous case as reducing the feeding rate increases the energy cost. The performance of the optimiser 
will be analysed further by assigning weightings to the objective functions and adding an environmental penalty 
to flaring biogas, so a trade-off between meeting demand and reducing energy costs can be achieved. 

This study looked at optimising a single aspect of the case AD system however, it be now be expanded to 
determine the effect of alternate technologies and/or sizing the components differently on the objective functions. 
The model will be expanded to include multiple decision variables and objective functions. The effect of 
modifying different aspects of the case study system such as the method used to heat the digester, the size of the 
storage balloon and the possibility of producing electricity from the system instead of using it for cooking. The 
feasibility of composting the excess feedstock instead of creating excess biogas will also be investigated and 
whether certain technologies i.e. H2S scrubber and H2O condenser are in fact needed for this system or not will 
be assessed. 
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