1	Boron adsorption by steelmaking slag for boron removal excess from irrigation
2	(natural and waste) waters
3	
4	Athanasios Balidakis* and Theodora Matsi
5	Soil Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki
6	54124, Greece
7	
8	* Corresponding author: <u>mpalidak@agro.auth.gr</u>
9	

1	
2	Boron adsorption by steelmaking slag for boron removal excess from irrigation
3	(natural and waste) waters
4	
5	Abstract
6	Purpose
7	Steelmaking slag, a by-product of the steel-refining process, could be used for removing B excess from
8	irrigation natural and waste waters, due to its strongly alkaline reaction. The objectives of this study
9	were to: a) establish the optimum external solution / adsorbent ratio and equilibration time of B
10	adsorption by the slag and b) assess the slag's capacity to adsorb B.
11	Methods
12	Two preliminary B adsorption experiments were conducted to determine the optimum external solution
13	/ adsorbent ratio and equilibration time. The optimum conditions were employed for the main B
14	adsorption experiment and the non-linear Langmuir and Freundlich isotherms were fitted to the B
15	adsorption data.
16	Results
17	Boron adsorption increased with the increase of the external solution / adsorbent ratio up to the ratio of
18	200:1. Although, almost 40 % of B was adsorbed within the first hour of equilibration period, the
19	adsorption gradually increased until the 72 h. The Langmuir B adsorption maximum was almost 150
20	mg g-1, considerably higher than other adsorbents, like fly ash, calcite and magnesia. At B initial
21	concentrations lower than 4 mg L ⁻¹ , slag removed 60 % of B and reduced it below the permissible
22	levels for irrigation waters (< 3 mg L ⁻¹) for most crops. The pH of the equilibrium solution was 10.3 \pm
23	0.8 and dropped to acceptable levels for irrigation waters (< 8.5), after contact with atmosphere for one
24	week.
25	Conclusions
26	Consequently, steelmaking slag can be used effectively for removing B excess from irrigation waters.
27	However, attention should be given to the pH of the slag-treated waters.
28	Keywords Adsorption; Boron; Irrigation waters; Steelmaking slag
29	

2 Introduction

3

4 Boron concentration in irrigation (natural and waste) waters higher than 3 mg B L⁻¹ can cause 5 adverse effects on most crops [1]. Consequently, it is essential that B excess in irrigation waters should 6 be reduced prior to application. As of now, B removal from water by adsorption not only has been the 7 most cost-effective method but also a method by which even low B concentrations can be removed. 8 Several materials are proposed in the literature as B adsorbents, like chelating resins, activated C, 9 oxides, hydroxides and industrial wastes [2], fly ash and coal [3, 4] and magnesia [5]; certain of them 10 have been proven effective B adsorbents. 11 Steelmaking slag, a by-product of the steel refining process [6], is mainly a calcareous 12 material with strongly alkaline reaction and contains among others Ca, Mg, Fe and Al oxides at 13 considerable amounts [7]. The slag's reaction and content favor B adsorption [8]. Steelmaking slag had 14 been tested as adsorbent for the removal of metals and non-metals, from natural and waste waters. In 15 the literature is reported removal of Cu, Zn, Cd, Pb and As, from wastewaters by the particular slag, 16 higher than 90 % [9, 10, 11] and removal of P higher than 99 % [12]. As far as B is concerned, 17 percentages of B removal by the slag higher than 95 % are reported [13, 14]. 18 Based on the above, due to its alkaline reaction and composition, steelmaking slag could be used 19 for removing B excess from irrigation waters, through adsorption. The purpose of this work was to 20 investigate extensively B adsorption on steelmaking slag by: a) establishing the optimum external 21 solution / adsorbent ratio and equilibration time of B adsorption and b) assessing the capacity of the 22 slag to adsorb B, by fitting non-linear isotherms to B adsorption data 23 24 **Materials and Methods** 25 26 Certain properties of the steelmaking slag 27 A sample of ground steelmaking slag (EINECS No: 266-004-1 CAS No: 65996-71-6) of 28 particle size fraction < 0.1 mm was obtained from the Greek industry Aeiforos (SIDENOR). The slag's 29 composition was CaO (53.9 %), SiO₂ (18.1 %), FeO (7.9 %), MgO (4.7 %), Al₂O₃ (3.2 %), MnO (2.1 30 %), Cr (< 0.06 %), Zn (< 0.04 %) and other metals (< 0.02 %) [7]. In the present study, the slag was analyzed for moisture content, pH and EC (in suspension with water at a ratio of 1:2), in five replications. Briefly, the slag had low moisture content ($11 \pm 8 \text{ g kg}^{-1}$), strongly alkaline reaction (pH 12.1 ± 0.1) and increased EC (7.6 ± 0.2 dS m⁻¹). Moreover, qualitative mineralogical composition of the slag, before and after equilibration with H₂O and drying, was determined by x-ray diffraction patterns of randomly oriented powder specimens.

6

7 Boron adsorption experiments

8 Two preliminary and a main B adsorption experiment on the steelmaking slag were conducted 9 at 25 ± 1 °C, in three replications. For each experiment, after equilibration, pH, EC and B by the 10 azomethine-H method [15] were determined in the equilibrium solution. Adsorbed B was calculated as 11 the difference between the amount added and that found in solution at equilibrium. For all experiments, 12 B solutions of 0-500 mg B L^{-1} as H₃BO₃ were used for equilibration. Ratios of 10:1-500:1 were 13 investigated for the optimum solution / adsorbent ratio determination and periods of 1-72 h were 14 investigated for the optimum equilibration time determination. Optimum solution / adsorbent ratio 15 (200:1) and equilibration time (72 h), which were obtained from the preliminary experiments, were 16 employed for the main B adsorption experiment. In addition, at the end of the main B adsorption 17 experiment, pH was determined every 24 h for the following days in order to ensure that it had dropped 18 below the acceptable levels for irrigation waters (< 8.5) [1].

19

20 Statistical analysis

The B adsorption capacity of the slag was determined from the data of the main B adsorption
experiment after fitting to them the Langmuir (1) and Freundlich (2) equations by nonlinear regression,
using the Levenberg-Marquardt algorithm and the statistical package SPSS, version 25.0. The goodness
of fit for both equations was evaluated using the *F*-test.

25 Langmuir:
$$x = KMC/(1+KC)$$
 (1)

26 Freundlich: $x = kC^n$

where: x is adsorbed B (mg g⁻¹), C is B in the equilibrium solution (mg L⁻¹) and K, M, k and n are parameters. Specifically, K (L mg⁻¹) express the affinity of the slag for B, M (mg g⁻¹) is the maximum B adsorption capacity of slag, k is the amount of adsorbed B when C = 1, n is a measure of B adsorption intensity.

(2)

2 Results and Discussion

3

4 The results of the preliminary B adsorption experiments showed that as the ratio of external 5 solution / adsorbent increased, B adsorption also increased. These results contradict other researchers' 6 findings, since the opposite trend has been observed for other inorganic alkaline materials, which have 7 been tested as B adsorbents [3, 4, 5, 16]. From all ratios, the 200:1 ratio was considered as the optimum 8 one, because at the specific ratio B adsorption seemed to maximize. As far as the optimum 9 equilibration time is concerned, B adsorption seemed to be completed to a large extent at the end of the 10 first hour of the equilibration period, since 38.6 ± 5.7 % of B had been adsorbed. However, a gradual 11 increase in B adsorption was noticed afterwards, while after 72 h of equilibration, 51.1 ± 14.0 % of B 12 was adsorbed. Although the 24 h are considered adequate time for equilibration between solid and 13 liquid phase in B adsorption experiments [8], in the current study the 72 h were considered as the 14 optimum equilibration period, because at the particular time B adsorption seemed to maximize.

Both the Langmuir and Freundlich nonlinear equations were fitted satisfactorily to the B adsorption data (Fig. 1), with the Langmuir equation to be slightly superior to the Freundlich, as this was judged from the values of the *F*-test (Table 1). Langmuir's adsorption maximum (145 mg g⁻¹) (Table 1) indicated that steelmaking slag exhibited high B adsorption capacity, which was considerably higher than that of other adsorbents reported in the literature. Specifically, other researchers reported Langmuir B adsorption maximum 0.17 mg g⁻¹ [16] and 0.30 mg g⁻¹ [4] for fly ash, 0.215 mg g⁻¹ for calcite [17] and 4.45 mg g⁻¹ for magnesia [5].

When B concentration in the external solution ranged between 1-4 mg L⁻¹, slag achieved an average B removal of 60 % and reduced B concentration below critical levels for irrigation waters (< 3 mg L⁻¹). The EC of the equilibrium solution had a mean value of 1.6 ± 0.1 dS m⁻¹, which is considered acceptable for irrigation waters for most crops. The pH of the equilibrium solution was strongly alkaline initially (10.3 ± 0.8) and then dropped to acceptable levels for irrigation waters (< 8.4) after being in contact with atmosphere for seven days [1].

28 The steelmaking slag's high alkaline reaction substantiated its high adsorption capacity for B to a 29 large extent, but further investigation of the slag's mineralogical composition, through x-ray diffraction 30 analysis, was considered essential for better understanding the B adsorption process. These results 1 showed that the slag is mainly an amorphous material (Fig. 2); however, certain crystalline phases can 2 be easily distinguished [Ca(OH)₂ and CaCO₃]. Crystalline phases which are not identified in Fig. 2 3 correspond to hydrous Si-Ca phases. It is worth noting that during equilibration with H₂O, the slag's 4 mineralogical composition changed due to Ca(OH)₂ transformation to CaCO₃ (Fig. 2). Consequently, 5 the slag's high B adsorption capacity could be attributed not only to its strongly alkaline reaction but 6 also to its mineralogical composition and its alteration during the equilibration period of the B 7 adsorption experiment. The findings of the current study are supported by other researchers findings, 8 who reported that B adsorption by amorphous materials is higher than that of the well crystallized 9 materials [18] and that CaCO₃ favors B adsorption [17].

10

11 Conclusions

12

According to Langmuir's nonlinear equation, steelmaking slag exhibited an adsorption maximum that reached almost 150 mg g⁻¹, being considerably higher than that of other B adsorbents. Based on its high B adsorption capacity, steelmaking slag can be used effectively for removing B excess from irrigation (natural and waste) waters. However, the pH of slag-treated waters should be considered in the perspective of using them for irrigation purposes.

19 References

- 20 1. Ayers, R. S., Westcot, D. W.: Water quality for agriculture. FAO Irrigation and Drainage Paper 29,
 21 rev. 1. Rome: FAO. (1985)
- 22 2. Guan, Z., Lv, J., Bai, P., Guo, X.: Boron removal from aqueous solutions by adsorption A review.
 23 Desalination. 383, 29-37 (2016)
- 24 3. Polat, H., Vengosh, A., Pankratov, I., Polat, M.: A new methodology for removal of boron from
 25 water by coal and fly ash. Desalination. 164, 173-188 (2004)
- 4. Yuksel, S., Yurum, Y.: Removal of boron from aqueous solutions by adsorption using fly ash,
 zeolite, and demineralized lignite. Sep. Sci. Technol. 45, 105-115 (2009)
- 5. Dionisiou, N., Matsi, T., Misopolinos, N. D.: Use of magnesia for boron removal from irrigation
 water. J. Environ. Qual. 35, 2222-2228 (2006)

¹⁸

1	6. Euroslag, & Eurofer: Position paper on the status of ferrous slag.
2	http://projects.gibb.co.za/Portals/3/App%20J13 Position Paper April 2012.pdf (2012).
3	7. Samara, E., Matsi, T., Balidakis, A.: Soil application of sewage sludge stabilized with steelmaking
4	slag and its effect on soil properties and wheat growth. Waste Manag. 68, 378-387 (2017)
5	8. Goldberg, S.: Reactions of boron with soils. Plant Soil. 193, 35-48 (1997)
6	9. Duan, J., Su, B.: Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-
7	making slag. Chem. Eng. J. 246, 160-167 (2014)
8	10. Huifen Y., Wen, M., Weina Z., Zhiyong, W.: Steel slag as multi-functional material for removal of
9	heavy metal ions in wastewater. In: The 2011 International conference on computer
10	distributed control and intelligent environmental monitoring proceedings, pp. 1287-1290.
11	IEEE (2011)
12	11. Oh, C., Rhee, S., Oh, M., Park, J.: Removal characteristics of As(III) and As(V) from acidic
13	aqueous solution by steel making slag. J. Hazard. Mater. 213-214, 147-155 (2012)
14	12. Lan, Y. Z., Zhang, S., Wang, J. K., Smith, R. W.: Phosphorus removal using steel slag. Acta
15	Metall. Sin-Engl. 19(6), 449-454 (2006)
16	13. Mercado-Borrayo, B. M., Schouwenaars, R., González-Chávez, J. L., Ramírez-Zamora, R. M.:
17	Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of
18	metalloids from contaminated water. J. Environ. Sci. Health A. 48(8), 887-895 (2013)
19	14. Mercado-Borrayo, B. M., Schouwenaars, R., Litter M. I., Ramírez-Zamora, R. M.: Adsorption of
20	boron by metallurgical slag and iron nanoparticles. Adsorpt. Sci. and Technol. 32(2), 117-123.
21	(2014)
22	15. Keren, R.: Boron. In: D. L. Sparks (Ed.), Methods of soil analysis - Part 3 - Chemical methods,
23	SSSA Book Series 5, pp. 603-626. Madison, WI: SSSA and ASA (1996)
24	16. Polowczyk, I., Ulatowska, J., Kozlecki, T., Bastrzyk, A., Sawinski, W.: Studies on removal of
25	boron from aqueous solution by fly ash agglomerates. Desalination. 310, 93-101. (2013)
26	17. Goldberg, S., Forster, H. S.: Boron sorption on calcareous soils and reference calcites. Soil Sci.
27	152(4), 304-310 (1991)
28	18. Goldberg, S., & R.A. Glaubig, R. A.: Boron adsorption on aluminium and iron oxides. Soil Sci.
29	Soc. Am. J. 49, 1374-1379 (1985)
30	

- 1
- 2 Figure captions
- Fig. 1 Experimental data of B adsorption on the steelmaking slag and the fitted non-linear Langmuir
 and Freundlich isotherms
- 5 Fig. 2 X-ray diffraction patterns of steelmaking slag, before and after equilibration with H₂O and
- 6 drying
- 7

2 Table 1 The parameters of the nonlinear Langmuir and Freundlich equations and their respective *F*-test

3 values, for B adsorption on the steelmaking slag

Equation	Parameters		F-test
Langmuir	M (mg g ⁻¹)	K (L mg ⁻¹)	1107***
	$145^\dagger\pm47^\ddagger$	0.001±0.0004	
Freundlich	k (mg kg ⁻¹)	n	953***
	236 ± 66	0.88 ± 0.05	

4 [†] Mean

5 [‡] Standard deviation

6 *** $p \le 0.001$

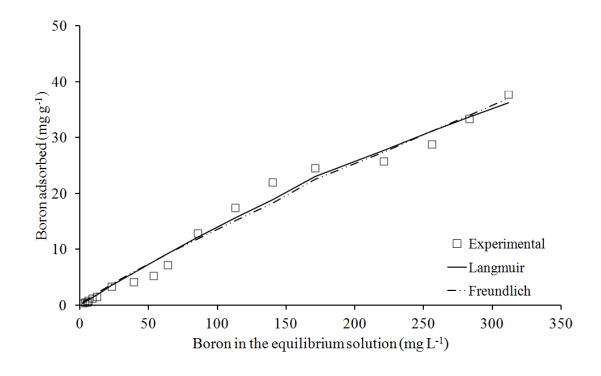


Fig. 1 Experimental data of B adsorption on the steelmaking slag and the fitted non-linear Langmuirand Freundlich isotherms

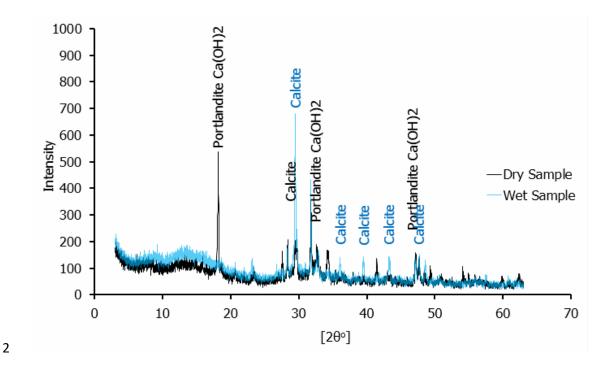


Fig. 2 X-ray diffraction patterns of steelmaking slag, before and after equilibration with H₂O and
drying