

Key differences between incineration and gasification

Incineration	Gasification				
Combustion vs. Gasification					
Designed to maximize the conversion of waste to CO ₂ and H ₂ O	Designed to maximize the conversion of waste to CO and H ₂ Operates under controlled amount of air				
Employs large quantities of excess air					
Highly oxidizing environment	Reducing environment				
Gas Cl	eanup				
Treated flue gas discharged to atmosphere. Flue gas may contain dioxins and furans	Cleaned syngas used for chemical production and/or power production (with minimal dioxins and furan content)				
Fuel sulfur converted to SOx and discharged with flue gas	Recovery of reduced sulfur species in th form of a high purity elemental sulfur or sulfuric acid byproduct is feasible				
Residue and As	h Slag Handling				
Collected and disposed as waste (may qualify to be used as fertilizer)	Collected and disposed as waste (may qualify to be used as fertilizer)				

Why biosolids gasification?
 Biosolids is of itself an energy source It is partially dried, collected and transported by default
 Increased landfilling regulations and costs Directives for the reduction of landfilled biodegradable fraction Sitting/permitting new landfills is increasingly difficult
 Reduction of carbon footprint Gasses emitted from landfills contain methane, a greenhouse gas Municipalities will be able to benefit from carbon credits
 Benefits from the production of renewable energy Municipalities can claim subsidies for electrical energy produced from renewable sources
 Clean process with minimal residue Homogeneity of feedstock Production of high added value products from syngas (to the contrary of combustion) Potential for production of hydrogen, ethanol, diesel fuel, chemicals etc. Viable projects are affordable in today's economy The project pays off in relatively short time, due to revenue from electricity and tipping fees
Reduced overall cost of biosolids management!

Characteristics of gasifiers							
Gasifier Type	Scale	Moisture	Fuel Requirements Flexibility	Efficiency	Gas Characteristics	Other Notes - Small scale - Easy to control - Produces biochar at low temperature - Low throughput - Higher maintenance costs	
Downdraft Fixed Bed	5 kW _{th} to 2 MW _{th}	<20%	Less tolerant of fuel switching Requires uniform particle size large particles	Very Good	 Very low tar Moderate Particulates 		
Updraft Fixed Bed	<10 MW _{th}	up to 50% - 55%	• More tolerant of fuel switching than downdraft	Excellent	-Very high tar (10% to 20%) -Low particulates -High methane	Small and medium scale Easy to control Can handle high moisture content Low throughput	
Bubbling Fluidized Bed	<25 MW _{th}	<15%	Very fuel flexible Can tolerate high ash feedstocks Requires small particle size	Good	Moderate tar Very high in particulates	Medium scale Higher throughput Reduced char Ash does not melt Simpler than circulating bed	
Circulating Fluidized Bed	A few MW _{th} up to 100 MW _{th}	<15%	· Very fuel flexible · Can tolerate high ash feedstocks · Requires small particle size	Very Good	Low tar -Very high in particulates	Medium to large scale Higher throughput Reduced char Ash does not melt Excellent fuel flexibility Smaller size than bubbling fluidized	
Plasma	<30MW	any	• Greater feed flexibility without the need for extensive pretreatment • solid waste capability	Very Good	· Lowest in trace contaminants; no tar, char, residual carbon, only producing a glassy slag	Large scale Easy to control Process is costly High temperature (5000°-7000°F)	
Liquid Metal	<7MW	<5%	Generally requires low moisture due to the possibility of steam explosion	Very Good	.Low trace contaminants; virtually no tar, char, residual carbon	· High syngas quality	
Supercritical Water	UNK	70 - 95%	· Suitable for the conversion of wet organic materials	Good	· Suppressed formation of tar and char	Short reaction time High energy conversion efficiency b avoiding the process of drying step Selectivity of syngas with temperatu control and catalysts	

Run	P F-S	Moisture	Temp	CO	CO_2	CH_4	H_2	Other	Ash
No	solids	(%)	. (°C)	(%)	(%)	(%)	(%)	gases	(kg)
	(kg)							(%)	
Run1	8.15 ^a	17	1050	29.87	2.63	1.79	62.96	2.75	0.52 ^b
Run2	8.15 ^a	17	950	29.86	4.14	2.92	62.18	0.90	0.52 ^b
a: Combine 5: Total me	d weight of in asured weight	feed charge for t of ash from b	Run1 and oth Run1 a	Run2 nd Run2 co	mbined				
Syno	as proc	duction	<u>→ 1 5</u>	6 m ³ /	' ka (1	7% w	let has	is)	
Cyng	us proc	2000001	/ 1.0	, o ,	Ng (i	7 /0 1		10)	
		luction -	→ 12. ⁴	63 kJ	/ ka (⁻	17% v	vet bas	sis)	
Ener									

