A transformation of MSW into recyclable materials and refined renewable biomass fuel using MARSS technology - a solution for local authorities in Greece
MARSS opportunities for countries without access to Incineration and depending on landfilling

Source: T. Pretz
Naples 15 April 2015
The MARSS drivers and opportunities

• EU landfill directive to reduce landfilling of organic waste
• MBT is a very common technology throughout Europe
• Waste incineration brings higher end costs to consumers and can provoke high consumer resistance! Italy for example.
• MARSS offers a technical solution to separate a Refined Renewable Biomass Fuel from MBT treated MSW, using well known and proved off the shelf technical hardware in flexible modules.
MARSS Partners and project funding

EU Life Demonstration Project:
- Start date: September 2012
- End date: December 2015
- Total budget: €4,154,933.00
- EC contribution: €2,073,727.00
Technological options

- The Bio-Mechanical-Drying and sorting Plant and location of MARSS Demo plant – RegEnt GmbH
Alternative potential for Europe

• “One size fits all”

One bin
One drying
One Sorting
Several Recycling processes (material/thermal)

Source: Dr. M Monzel, RegEnt GmbH,
Plant operator RegEnt, Mertesdorf, Germany:

- Founded as a waste disposal Company „Regionale Entsorgungsgesellschaft mbH“ in 2006
- Area of collection/activity: 4.923 km²
- Inhabitants: 532.000
- Plus 2.2 millions tourists, 7.2 millions guest-nights
- Capacity of plant: 220.000 tons/year
- Full operating: since September 2007
Drying in the “Rot-box”
MARSS Demo Plant
Input and output materials

Input - MMSW

Output fuel - RRBF
Test CHP plant at Fraunhofer Institute, Germany

- Combustion testing unit (fluidised bed technology)
- 500 kW Unit
- Materials already tested include untreated wood, demolition wood, chipboard, sewage sludge, car tyres and pre-treated MSW, RRBF from MARSS plant
Results of fuel tests on MARSS RRBF product

- Continuous feeding of the MARSS RRBF fuel into the test unit successful due to good material properties of the fuel.
- Combustion at constant temperature of 900 degrees C demonstrated.
- Heating value RRBF >12 MJ/kg.
- Carbon about 35%, Volatiles about 66%.
- Ash content of about 25%.
- Phosphorus levels about 2300 ppm.
- Purity of RRBF most likely > 98 Ma.-%.
- Combustion tests plus material characterisation to end 2015.
The RRBF opportunities

• Social acceptance for renewable energy recovery is much higher than for energy recovery from waste

• Even small-scaled renewable energy power plants can be driven economically, which offers opportunities for regional energy supply solutions

• RRBF is a designed biomass fuel and can be adapted to the technical demands of different chamber systems

• **Outlook:** A 100,000 t/a MBT plant, working for 300,000 inhabitants, could supply about 11,000 households with electricity (based on about 4000kW/a consumption per household)
Added Value!

- RRBF separated from MSW reduces the total mass of landfilled waste minimising landfill capacity demand and landfill emissions
- RRBF as CO\(_2\) neutral fuel is highly valued in competition with fossil fuels – Renewable Energy credits
- The option to produce RRBF by adding modular technologies to existing or mandatory MSW treatment plants offers economically attractive opportunities
- We are looking forward to find additional utilisations e.g. combined with sewage sludge treatment and phosphorus recycling

How can we transform opportunities into reality and implementation by the local authorities responsible for waste management in Greece?
Decision support tool for local authorities

1. Technological options
2. Stakeholder consultancy
3. Impacts & Burdens
4. Multi-criteria complex analyses
5. Psychological/cross-cultural approaches

1st level Decision

6. Second stage consultancy
7. Analysis of additional conflicts

8. Quality check of decisions

1st level Decision

9. Testing of toolkit

Final Decision

- Identifying possible waste management solutions, full technical transparency
- Identifying formal and informal institutions and legislations

* Identification of relevant stakeholders involved
* Definition of values, aims and preferences of the involved stakeholders
* Concerns, knowledge levels, awareness, willingness to pay etc
* Evaluate preferences of the involved stakeholders
* Identification of risks for conflicts, negotiations margins etc

- Identification of suitable performance indicators
- Environmental impacts/burdens of technical options (LCA)

- Understanding balance between desirability and feasibility
- Identification of relevant criteria
- Multi-criteria assessments (MuSIASEM)

- Emotional, social, cultural aspects, irrationality, fears etc

1st level Decision

• Obtaining approval for 1st level decision from stakeholders
• Possible provision of more information through steps 1 to 4.

• Bringing in additional tools such as NAIAD (Novel Approach to Imprecise Assessment and Decision Environments) to help with additional conflicts

• Robustness of decision: discussion of final results with stakeholders/experts

Final Decision

• Applicability & testing of the toolkit to other new developments and and countries
Real case feasibility study – Naples

CASE STUDY AREA

Municipality of Naples

Area: 111.27 kmq
Residents: 1 million inhabitants
Population Density: 8180 inhs/kmq
Municipal Solid Waste Production: 517000 tons/yr* (2011)

More than 60% of MSW is sent to landfill

Naples waste “emergency” situation still not resolved

*all data are provided by regional authority
Results of stakeholder consultancy in Naples

Stakeholder groups responses:
Local authorities (29%), local waste authorities (26%), academics (24%), local general public (15%), others (6%)

Q? What do you believe is the main reason for the current emergency in Naples and Campania Region?
• 59% believed the institutions/government were to blame.
• 5% believed that the choice of technology was to blame.
• 35% said social and cultural factors were to blame.
• 1% said that economics were a factor.

Q? Level of acceptance to MARSS technology
• 98% in favour
• 2% against

Q? How likely is MARSS technology able to definitely solve the problem of waste management and emergency in Naples and in Campania Region?
• 69% Yes
• 29% Maybe
• 2% No
Greek stakeholder consultancy

- Action A2: MARSS: Cross-cultural Stake-holder consultancy questionnaire

- Δράση Α2: MARSS: Διαπολιτιστικό ερωτηματολόγιο συμβουλευτικών υπηρεσιών προς τα ενδιαφερόμενα μέρη

- Greek expert in charge: Prof. Maria Loizidou, NTUA

- Action co-ordinator: Prof. Ingo Romey
Invitation to join the International surveys

We invite everyone to take part in our international on-line survey!

Local authorities
Waste management companies
General public
Government bodies
Academic institutions etc

Questionnaires for Greece available on-line at: www.marss.rwth-aachen.de

Or please contact me directly for an interview during the conference.
Thank you!

For more information
Kate Hornsby
(hornsby@ifa.rwth-aachen.de)

www.marss.rwth-aachen.de

Winner of MARSS art competition – Lara aged 9 years