

Anaerobic digestion of Jatropha curcas oil cake

Marcin Łukaszewicz, Sławomir Jabłoński Tadeusz Beutel Maciej Sygit

Biodiesel from Jatropha curcas

- Oil seeds producing shrub belonging to Euphabioaceae family.
- Seed oil content 30-40% (by weight).
- Seed yield 1-6 ton/ha.

What to do with oil cake?

- Oil cake is toxic due to the presence of phorbol esters.
- It also contains atinutrients: saponins, phytic acid, trypsin inhibitors.

Anaerobic digestion

Benefits:

- Detoxification
- Recovery of the energy
- Recovery of nutrients: ammonium and phosphates
- Reduction of uncontrolled green house gases release

Why should we recover nitrogen?

Haber process:

•
$$N_2 + 3 H_2 \rightarrow 2 NH_3$$
 $(\Delta H = -92 \text{ kJ/mol})$

•
$$CH_4 + H_2O \rightarrow CO + 3 H_2$$
 ($\Delta H = 206 \text{ kJ/mol}$)

•
$$CO + 1/2 O_2 \rightarrow CO_2$$
 ($\Delta H=-283 \text{ kJ/mol}$)

 To produce 1 ton of ammonia about 1000 m³ of methane is required.

How much can we get?

Composition of *J. curcas* oil cake:

Volatile solids - 87.4%

• Protein - 19.9%

Phytate - 10.5%

Maximal theoretical gain:

- 616 m³⋅t⁻¹

Ammonium nitrogen - 31.8 kg·t⁻¹

Phosphate - 89.2 kg·t⁻¹

Obstacle 1: Low biogas yield

Brasica napus

TBY: 711 m³·t⁻¹

BY: 507 m³·t⁻¹

Efficiency: 71.3%

Linum usitatissimum

TBY: 792 m³·t⁻¹

BY: 545 m³·t⁻¹

Efficiency: 78.8%

Jatropha curcas

TBY: 616 m³·t⁻¹

BY: 281 m³·t⁻¹

Efficiency: 45.6%

Possible causes

- Protease inhibitors may reduce protein digestability.
- Phytate may reduce microorganisms activity by helating metal ions.

Solution: pretreatment

 Oilcake samples were incubated at different temperatures with NaCl solution or hydrochloric acid solution.

Pretreatment result

 The activity of trypsin inhibitor was reduced after incubation at 115 °C.

Pretreatment result

 Concentration of phytate was also reduced even after incubation at 70°C.

Production rate

Digestion rate for samples with salt addition incubated at 20 °C and 115 °C was similar, for other samples it was lower.

Biogas production efficiency

 Total biogas production level was not affected by preptreatment.

Alternative solution: percolation system

- Hydrolysis step is performed in micro aerobic conditions allowing digestion of lignin and cellulose.
- Water demand is reduced.

Obstacle 2: Nitrogen accumulation

Proteins – 19% of *J. curcas* oilcake

Up to 32 kg·t ⁻¹ of oilcake

- Digestion of proteins produces ammonia
- At high concentration ammonia is toxic to microorganisms

Solution: struvite formation

 $(NH_4)MgPO_4 \cdot 6(H_2O)$

- Ammonium ions may be removed from the solution by the precipitation with phosphate and magnesium.
- Nitrogen removal efficiency reached 53%.

Other possible improvements

Metanogens database www.metanogen.biotech.uni.wroc.pl

Metanogens growth in pH

pH minimum and pH optimal min. comparison

Other possible improvements

Other possible improvements

And how does it look like in reality?

Conclusions

- Pretreatment of *J. curcas* oil cake does not improve biogas yield
- Continuous fermentation of *J. curcas* oil cake may result in process collapse due to ammonia formation
- Excessive nitrogen may be removed by struvite precipitation.
- Additional benefits such as reduction of CO₂ concentration may be achieved in modular bioreactor

Thank you for your attention.

