Alternative biohydrometallurgical recovery of metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulating plants

3RD INTERNATIONAL CONFERENCE on Sustainable Solid Waste Management

Tinos 2015

Johannes Kisser1,2, Theresa Rosenkranz2, Markus Puschenreiter2, Heinz Gattringer1, Daniela Kretschy1, Andrea Zraunig1, Monika Iordanopoulos-Kisser3

1 alchemia-nova - Institute for innovative phytochemistry & closed loop processes, \url{www.alchemia-nova.net}

2 BOKU Tulln, Soil science, RHIZO group, \url{www.boku.ac.at}

3 Technical office Monika Iordanopoulos-Kisser, \url{www.mjkisser.at}

\url{www.alchemia-nova.net}
Motivation

- More than 90% material import
- Resource scarcity \Rightarrow price \uparrow
- Technologies to recover critical raw materials are rare and expensive
- Linear solutions are not sufficient

Source: UNEP Year Book 2011, Emerging issues in our global environment
Introduction

- Hyperaccumulating metalophytes
- Phytomining developed from phytoremediation
- Phytoextraction of metals from substrate
- Harvesting & treating plants to gain “bio-ore”
Phytomining

First suggested by Baker & Brooks in 1989

- Ni extraction & biomass combustion resulted in bio-ore containing 15% Ni
- Fertiliser amendments to increase extraction
- Improving phytoextraction with
 - Increasing metal bioavailability (microorganisms, pH-decrease, chelating agents)
 - Crops themselves (species selection, biotechnology, seed coating)
 - Environmental factors - shortening growth cycle (CO₂, shade)

Phytomining of Ni using Alyssum murale on ultramafic Vertisols in Albania

Source: Guillaume Echevarria, Université de Lorraine, France

www.alchemia-nova.net
Absolute accumulation on different substrates from pre-trials

Graph:
- **Y-axis:** mg/kg DM
- **X-axis:** Different substrates (Dryopteris, Alys sludge, Alys slag, Alys Tr, Pteris, sunfi sludge, sunfi slags, sunfi Tr, Phylolacca, Eichor Tr)
- **Legend:**
 - Nickel
 - Manganese
 - Rubidium
 - Molybdenum
 - Vanadium
 - Strontium
Relative accumulation on sewage sludge from pre-trial

- Dryopteris filix-mas
- Alyssum murale
- Pteris cretica
- Helianthus annus
- Phytolacca americana

- nickel
- manganese
- rubidium
- molybdenum
- vanadium
- strontium
Overview for sewage sludge

<table>
<thead>
<tr>
<th></th>
<th>Alyssum murale</th>
<th>Helianthus annus</th>
<th>Pteris cretica</th>
<th>Dryopteris filix-mas</th>
<th>Eichhornia crassipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>nickel</td>
<td>✓✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>molybdenum</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓✓</td>
<td></td>
</tr>
<tr>
<td>rubidium</td>
<td>✓✓</td>
<td>✓✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>strontium</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cobalt</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manganese</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vanadium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>cadmium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>zinc</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

✓✓ high relative accumulation (5x-20x)
✓ moderate relative accumulation (1x-5x)
Value potential

sewage sludge – ashes – incinerator slags

<table>
<thead>
<tr>
<th>element</th>
<th>amount [mg/kg]=[ppm]</th>
<th>price for elements or oxides [€/kg]</th>
<th>value potential [€/t resource]</th>
<th>[€/a]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sludge</td>
<td>ash</td>
<td>slags</td>
<td>sludge</td>
</tr>
<tr>
<td>Rb</td>
<td>12.89</td>
<td>30.46</td>
<td>15.77</td>
<td>€ 792.00</td>
</tr>
<tr>
<td>Co</td>
<td>3.38</td>
<td>16.7</td>
<td>39.55</td>
<td>€ 20.33</td>
</tr>
<tr>
<td>Cr</td>
<td>44.6</td>
<td>169.7</td>
<td>570.5</td>
<td>€ 4.40</td>
</tr>
<tr>
<td>Mn</td>
<td>176</td>
<td>736</td>
<td>1653.5</td>
<td>€ 1.04</td>
</tr>
<tr>
<td>Mo</td>
<td>3.695</td>
<td>24.05</td>
<td>57.3</td>
<td>€ 15.20</td>
</tr>
<tr>
<td>Ni</td>
<td>33.1</td>
<td>140</td>
<td>200.5</td>
<td>€ 13.57</td>
</tr>
<tr>
<td>Sb</td>
<td>0.4</td>
<td>43.8</td>
<td>30.3</td>
<td>€ 7.10</td>
</tr>
<tr>
<td>V</td>
<td>20.2</td>
<td>72.5</td>
<td>54.65</td>
<td>€ 9.10</td>
</tr>
<tr>
<td>Zn</td>
<td>1000</td>
<td>4175</td>
<td>3118</td>
<td>€ 1.40</td>
</tr>
<tr>
<td>Ce</td>
<td>7.15</td>
<td>18.9</td>
<td>45.25</td>
<td>€ 5.14</td>
</tr>
<tr>
<td>Er</td>
<td>0.206</td>
<td>0.514</td>
<td>4.2315</td>
<td>€ 494.80</td>
</tr>
<tr>
<td>Eu</td>
<td>0.155</td>
<td>0.531</td>
<td>0.9155</td>
<td>€ 627.99</td>
</tr>
<tr>
<td>Gd</td>
<td>0.506</td>
<td>1.298</td>
<td>2.173</td>
<td>€ 35.40</td>
</tr>
<tr>
<td>Ho</td>
<td>0.065</td>
<td>0.162</td>
<td>0.3095</td>
<td>€ 144.15</td>
</tr>
<tr>
<td>La</td>
<td>4.23</td>
<td>12.2</td>
<td>28.75</td>
<td>€ 12.18</td>
</tr>
<tr>
<td>Lu</td>
<td>0.0213</td>
<td>0.0587</td>
<td>0.149</td>
<td>€ 1.887.79</td>
</tr>
<tr>
<td>Nd</td>
<td>2.76</td>
<td>6.73</td>
<td>13.94</td>
<td>€ 73.96</td>
</tr>
<tr>
<td>Pr</td>
<td>0.754</td>
<td>1.94</td>
<td>4.6</td>
<td>€ 59.75</td>
</tr>
<tr>
<td>Sc</td>
<td>1.35</td>
<td>2.84</td>
<td>2.73</td>
<td>€ 5.480.64</td>
</tr>
<tr>
<td>Sm</td>
<td>0.534</td>
<td>1.269</td>
<td>2.1955</td>
<td>€ 6.85</td>
</tr>
<tr>
<td>Tb</td>
<td>0.075</td>
<td>0.167</td>
<td>0.3955</td>
<td>€ 536.65</td>
</tr>
<tr>
<td>Y</td>
<td>1.96</td>
<td>7.02</td>
<td>15.18</td>
<td>€ 18.27</td>
</tr>
</tbody>
</table>

| sum | € 20.83 | € 52.47 | € 46.62 | € 1.406.135 | € 787.137 | € 6.992.909 |

Metal content of waste incinerator bottom ash (slags)

Only critical elements

Slags have biggest potential

Amount for Vienna:
- Ash: 15.000 t/a (fluidized bed furnace 1-3)
- Sludge: 67.500 t/a from EBS Vienna
- Slags: 150.000 t/a

www.alchemia-nova.net
Bottom ash is a challenging substrate for plant growth

High pH value (up to 12.5)

High electrical conductivity (2-8 mS/cm)

Low total nitrogen content (< 1 g/kg)

Toxic levels of some heavy metals (total content Cu= 1730-2390 mg/kg, Cr= 140-470 mg/kg; plant available fraction Cu > 2500 µg/kg Cr= 60-580 µg/kg)

Work done by Theresa Rosenkranz from BOKU
Substrate conditioning

First greenhouse trials (Theresa Rosenkranz, BOKU)

- At first treatment with diluted nitric acid to lower pH & increase N
- Leaching with deionized water to decrease salinity
- Amendments: compost (also from MBT), biochar

Field trials on landfill Vienna & further greenhouse trials

- Mixing with compost & 2 months ageing with high surface (reaction with CO\textsubscript{2} from air)
 \(\rightarrow\) pH decrease
Strategies

- Known hyperaccumulators
- High biomass producing plants in favour
- Annual & perennial plants
- Landfill-endemic plants (decided after field collection & analysis)
- Intercropping strategies for rhizosphere interaction
- Aided phytoextraction with EDTA
- Interactions with microorganisms (extraction, selection, inoculation)
Conclusion

- Plants grow also successfully on less amended bottom ash
- Hyperaccumulators did not show expected results so far
- Package of strategies could improve uptake (ageing, EDTA, microorganisms, intercropping)
- Accumulation of some greenhouse trials with aided phytoextraction not yet evaluated
- Field trials just started, results expected this autumn (if goats won’t eat our sprouts)

Source: MA48, municipality of Vienna
Outlook

- Screening of possible (hyper)accumulators for elements of interest also with aided phytoextraction
- Gaining biomass and recovering metals with 5 different methods (biological, physical, chemical) → Phytomining
- Possible strategies to utilise rest of the biomass
- Evaluation of all different methods
- Follow-up projects!
Thank you for your attention!

alchemia-nova

institute for innovative phytochemistry & closed loop processes

1140 Vienna

office@alchemia-nova.net

www.alchemia-nova.net