TINOS 2015, Greece

3rd International Conference on Sustainable Solid Waste Management

ENERGY FROM BIOMASS AND WASTE: IMPACT OF METAL SPECIES

 M. Ducousso*, A. Ephraim*, M. Hervy*, N. Klinghoffer***, M. Said*, J.L. Dirion*, N. Lyczko*, D. Pham Minh*, E. Weiss-Hortala*, P. Sharrock*, M. Castaldi**, <u>A.Nzihou*</u>
 *RAPSODEE Centre UMR CNRS 5302, Ecole des Mines Albi, France **City College - The City University of New York, USA
 *** Gaz Technology Institute - Des Plaines, Illinois, USA

OUTLINE

ENERGY FROM BIOMASS AND WASTE: IMPACT OF METAL SPECIES

- 1. Introduction to pyro-gasification of biomass and waste
- 2. Structure of pyro-gasification chars containing inorganics
- 3. Role of Inorganics (Metals)
 3.1. Role of Transition Metals
 3.2. Role of Alkali and Alkaline Earth Metals (AAEM)
- 4. Conclusions an Future works

Pyro-gasification for Energy/Materials Recovery from Waste and Biomass

 Energy recovery from waste/biomass results in reduction of volume of waste, low (or zero) net CO₂ emissions, and presents a distributed energy source

Pyro-gasification Process Fuel Cells Pt ANODE Gas products_ Energy Recovery H₂ IN (CO, CO_2, H_2, CH_4) H^+ PEM H^+ AIR IN and C_3 's) Pt CATHODE $(syngas = CO + H_2)$ Pyro-**G**as turbines gasification reactor Tar Fuels and chemicals (condensable organics) ~ 350-900°C Catalyst ash or char Gas Solid Fuel (air, N₂, H₂O, CO₂) (biomass, waste, RDF) to landfill

Reaction scheme for biomass and waste pyro-gasification

Challenges

- ✓ The cost of biomass processing must be decreased by designing new technologies and catalytic systems
- ✓ The decomposition of tar in Syngas
- ✓ Technological Challenges (Corrosion, fouling,...)

Main and side-reactions

$\mathbf{C} + H_20 \rightarrow \mathbf{CO} + H_2^*$	*Steam gasification	+ 131 MJ/kmol
$\mathbf{CO} + H_2\mathbf{O} \leftrightarrow \mathbf{CO}_2 + H_2^*$	* Water-gas shift (WGS)	- 41 MJ/kmol
$C + CO_2 \rightarrow 2CO$	Boudouard	+ 172 MJ/kmol
$C + O_2 + O_2$	Combustion	- 394 MJ/kmol

Examples of syngas end-uses and their approximate H₂/CO ratio requirements

Syngas end-use	H₂/CO ratio
Solid oxide fuel cells (SOFC)	4.0 - 6.0
Gas turbine combustion	2.5 – 4.0
Fischer Tropsch (diesel fuels)	1.5 – 3.0
Fischer Tropsch – Fe and Co – based catalyst process	0.5 – 1.5

OUTLINE

ENERGY FROM BIOMASS AND WASTE: IMPACT OF METAL SPECIES

- 1. Introduction to pyro-gasification of biomass and waste
- 2. Structure of pyro-gasification char containing inorganics
- 3. Role of Inorganics (Metals)
 3.1. Role of Transition Metals
 3.2. Role of Alkali and Alkaline Earth Metals (AAEM)
- 4. Conclusion an Future works

2. Structure of pyro-gasification char containing inorganics

Catalysts or inhibitors for pyro-gasification ? Impact of syngas rate, reaction light off?

The rate of the gasification process is affected by the process conditions, and is catalysed/inhibited by a number of different species:

Inorganics: Metals :

Alkali (M⁺): Li, Na, K
Alkaline Earth (Often M²⁺): Mg, Ca, Be, Ba, Sr
Transition : Ni, Pb, Zn, ...

2. Structure of pyro-gasification char containing inorganics

Catalysts or inhibitors for pyro-gasification ?

Small aromatic structural units, with the oxygen present mostly within heterocyclic and phenolic groups. The structural units are cross-linked by ether and olefinic linkages.

Metals :

- ✤ Alkali : Li, Na, K
- ✤ Alkaline Earth : Mg, Ca, Be, Ba, Sr
- ✤ Transition : Ni, Pb, Zn, …

Marsh H., Introduction to Carbon Science. Butterworths, 1989, 52 Nzihou A., Stanmore B., Sharrock P., Energy, 2013, 58, 305-317

2. Structure of pyro-gasification char containing inorganics

Why is char a good catalyst?

- Char-M often considered a 'low value' product
- Opportunity to "valorize" Char-M

Catalytic metals

Char-M contains metals and minerals used as catalysts in many common processes

Mg, K, Ca, P

ESEM images

Char-M after heating to 900°C

Fe, Ni, Mg, Mn, Ca, Al, Na, K measured in Char-M

Surface area & catalytic sites

High porosity increases available catalyst sites

Char-M contains micro-pores (d<2nm)

Char-M from gasification with steam

Char-M after heating to 900°C

ENERGY FROM BIOMASS AND WASTE: IMPACT OF METAL SPECIES

Introduction to pyro-gasification of biomass and waste
 Structure of pyro-gasification char containing inorganics

3. Role of Metals 3.1. Role of Transition Metals 3.2. Role of Alkali and Alkaline Earth Metals (AAEM)

4. Conclusion an Future works

3.1. Role of Transition Metals

Composition in metals for various biomass and waste									
Biomass	Wheat Straw*	Beech Wood*	Demol Timber	Phyto Remed	Sewage Sludge	Chicken Litter		per dge	Recov Fuel
	Metal content (mg kg ⁻¹ dry basis)								
As	0.18	3.5	550	22	(10)	-	8	-	37
Cd	0.2	1.0	8	-	38	-	<0.4	350	24
Со	-	-	-	-	-	-	9-12	-	67
Cr	3.0	2.5	1060	107	91	112	110	100	1020
Cu	25	43	1080	70	330	71	310	450	2800
Hg	0.06	0.12	10	8	2.7	-	1000	-	-
Mn	-	(73)	(2500)	-	950	596	55	-	1650
Ni	-	-	-	27	39	<10	-	480	209
Pb	6	33	6300	55	159	-	160	480	1100
Zn	-	(15)	-	-	1318	209	470	170	-

Nzihou A., Stanmore B., Journal of Hazardous Materials, 2013, 256/257, 56-66.

3.1. Role of Transition Metals

Thermogravimetric analysisc

- ✓ Metals increase and accelerate the wood weight loss from 70 to 370°C and inhibit it from 370 to 900°C in a presence of N₂.
- ✓ 850°C: wood contaminated by Cd has the same weight loss as raw wood
 - ⇔ Cd evaporation and not inhibitive effect from this point.
- $\checkmark\,$ No catalytic effect of Ni is observed in a presence of $\rm N_2$

3.1. Role of Transition Metals

Gasification (CO₂) of poplar wood contamined with Ni, Cd, Zn

Thermogravimetric analysisc

- ✓ Zn inhibits gasification reactions more than Cd
- ✓ Cd and Zn are inhibitors of gasification reactions
- ✓ Ni catalyses gasification reactions

3.2. Role of Alkali and Alkaline Earth Metals (AAEM)

 $² C + 2 H_2 O \rightarrow 2 CO + 2 H_2$

✓ CO

15

3.2. Role of Alkali and Alkaline Earth Metals (AAEM)

 Gasification of 14 biomass samples (including sawdust, bark, agricultural waste,...) Experimental conditions: 50kPa, 850°C

Reactivity towards steam of 14 biomass chars with respect to the AAEM content Zhang Y, et al. Fuel 2008; 87: 475–481

Group I: [K]+[Na] > [Ca];Group II: [Ca] > [K]+[Na];Group III: high $[SiO_2]$

Tinos, July 2, 2015

 Conversion of fir char with different catalysts under 100% CO₂ at 10°C/min temperature ramp

Huang Yet al.; Biotechnology Advances 2009; 27: 568–572

K + Na + Ca (mmol/100g daf char)

3.2. Role of Alkali and Alkaline Earth Metals (AAEM)

Catalytic performances: Catalyst testing for CH₄ cracking

Reaction: CH_4 (or Toluene) $\xrightarrow{Char-M}$ C + H₂ (+intermediate hydrocarbons < C6)

- CH₄ cracking is a reaction with few products
 - \rightarrow easier to compare performance of chars
- Experiments done in a thermo gravimetric analyzer (TGA)
 - \rightarrow enables continuous measurement of reaction via carbon deposition (mass gain)

Comparison to commercial catalysts

	Char-M	Pt/Al ₂ O ₃	Al ₂ O ₃
Light off temperature (°C)	675	775	850
Reaction extent (% mass gain)	20	11	6

Char catalyst lights off at a lower temperature than commercial metal catalyst

OUTLINE

ENERGY FROM BIOMASS AND WASTE: IMPACT OF METAL SPECIES

- Introduction to pyro-gasification of biomass and waste
 Structure of pyro-gasification char containing inorganics
 Role of Metals
 - **3.1. Role of Transition Metals**
 - 3.2. Role of Alkali and Alkaline Earth Metals (AAEM)
- 4. Conclusion an Future works

CONCLUSIONS and FUTURE WORKS

- ✓ Energy recovery from waste/biomass results in reduction of volume of waste, low (or zero) net CO₂ emissions, and presents a distributed energy source
- The rate of the gasification process is affected by the process conditions, and is catalysed/inhibited by a number of different species: Inorganics, Metals :
 Alkali : Li, Na, K
 - ✤ Alkaline Earth : Mg, Ca, Be, Ba, Sr
 - ✤ Transition : Ni, Pb, Zn, …
- Li, K, Na, Ca, Ni inherent in biomass and waste are the most effective catalysts. Particular emphasis on Group I (Na, K, Ca)

Prospects:

- ✓ Initial metal (AAEM) characterization is a key issue
- $\checkmark\,$ Modeling of reaction rate and behavior
- ✓ Make these processes cost-competitive in today's market

RECENT PAPERS FROM OUR GROUP IN THE FIELD

- 1. Ducousso M., Weiss-Hortala., Castaldi M., Nzihou M., Reactivity enhancement of gasification biochars for catalytic applications. *Fuel, Accepted June 2015*
- Nzihou A., Stanmore B., The Formation of Aerosols During the Co-combustion of Coal and Biomass. *Waste and Biomass Valorization, 2015,* DOI 10.1007/s12649-015-9390-3
- 3. Kinghoffer N., Castaldi M., Nzihou A., Influence of char composition and inorganics on catalytic activity of char from biomass gasification. *Fuel*, 2015,157,37-47
- 4. Nzihou A., Stanmore B., Sharrock P., A review of catalysts for the gasification of biomass char, with some reference to coal. *Energy*, 2013, 58, 305-317
- 5. Nzihou A., Stanmore B., The fate of heavy metals during combustion and gasification of contamined biomass A brief review. *Journal of Hazardous Materials*, 2013, 256/257, 56-66.
- 6. Kinghoffer N., Castaldi M., Nzihou A., Catalyst properties and catalytic performance of char from biomass gasification. *Industrial & Engineering Chemistry Research*, 2012, 51, 40, 3113-13122
- 7. Nzihou A., Flamant G., Stanmore B., Synthetic fuel from biomass using concentrated solar energy A review. *Energy*, 2012, 42, 121-131

Call for abstracts: WasteEng2016 Conference and Summer School, May 23-26, 2016, Albi - FRANCE

July 31, 2015: Deadline for abstracts submission

(Credits: CEU, PDH)

http://www.wasteeng2016.org/

Tinos, July 2, 2015

European Commission

Thank You!

EARTH ENGINEERING CENTER COLUMBIA UNIVERSITY AND CITY COLLEGE OF NEW YORK

