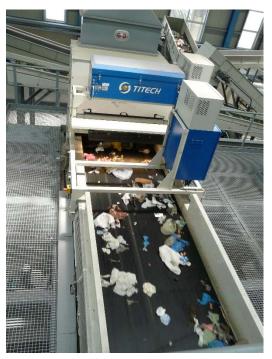


How MBT can Contribute to Sustainable Solid Waste Management – A Practical and Operational Analysis

Stephen R Smith Department of Civil and Environmental Engineering

Tony Burnett Director ELWA PFI, Shanks Waste Management Limited


Advantages and Disadvantages

<u>Advantages</u>

- 100% participation rate
- Captures all recoverable value
- Established technologies
- Control over product outputs through advanced separation technology
- Minimises landfill disposal (a zero rate is achievable)
- Simple bin and collection systems
- Flexible and adaptive to future demands
- Does not compete with other recycling schemes

Disadvantages

- Mixed waste treatment favoured less than source separation
- Negative public perception towards waste processing facilities
- Markets critical for fuel and other outputs

Current Food Waste Collection Systems are Ineffective

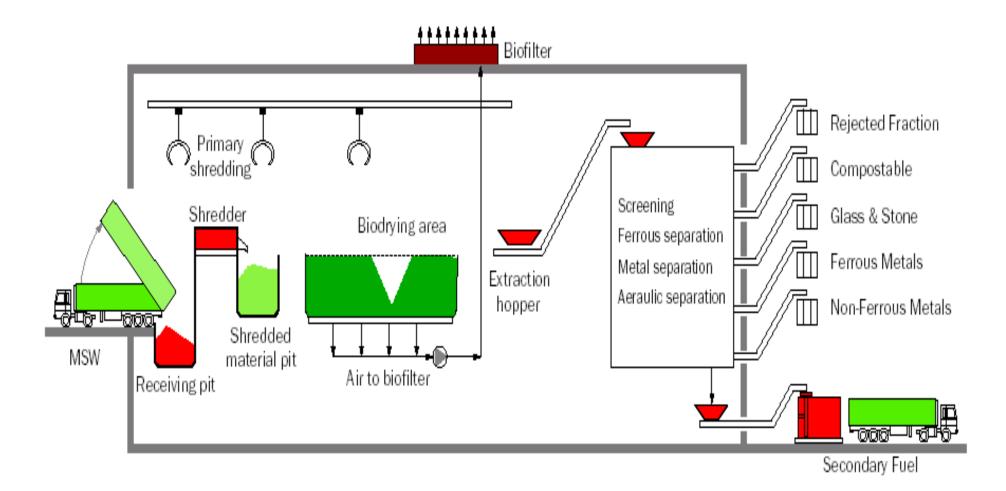
	ease in food er separate o		sidual	ecycle bod work
England	Spain	Sweden	Portugal	
9	7	16	-4	

http://www.valorgas.soton.ac.uk/

There will always be a residual waste stream and MBT can extract the value from this fraction!

Integrated Waste Management Contract

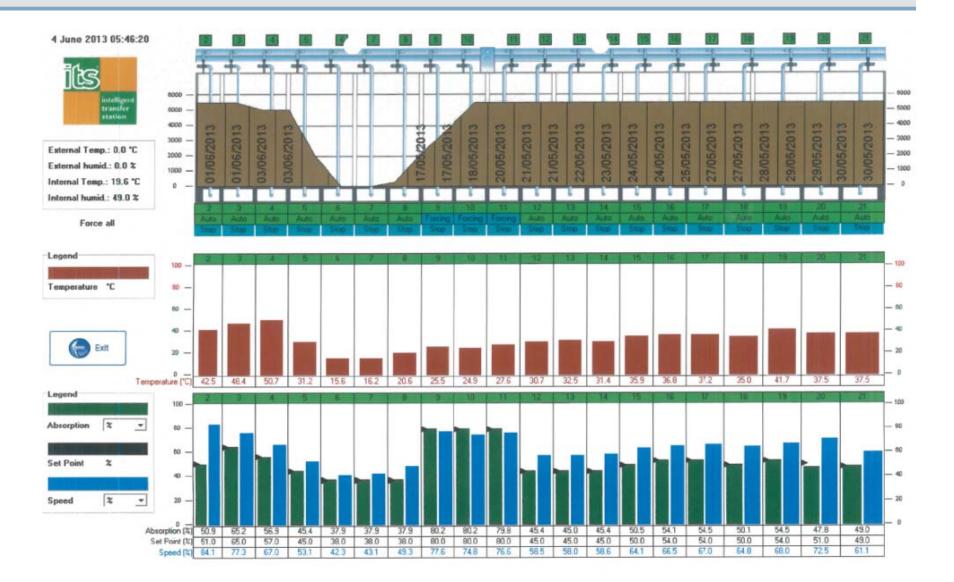
- 25 year PFI contract with ELWA Ltd
- Service to 4 London Boroughs for acceptance, treatment and disposal of all domestic and LA waste arisings
- Operated by Shanks
- *435,000* t/y of contract *w*aste arisings
- Minimum 45% diversion from landfill (2002 to 2015) raised to 67% from April 1st 2015 until contract end-date in 2027
- £130 million investment
 - 2 x MBTs, 4 x RRCs, 2 x MRFs
- MBT is a central feature of the contract to maximise moisture loss and produce SRF

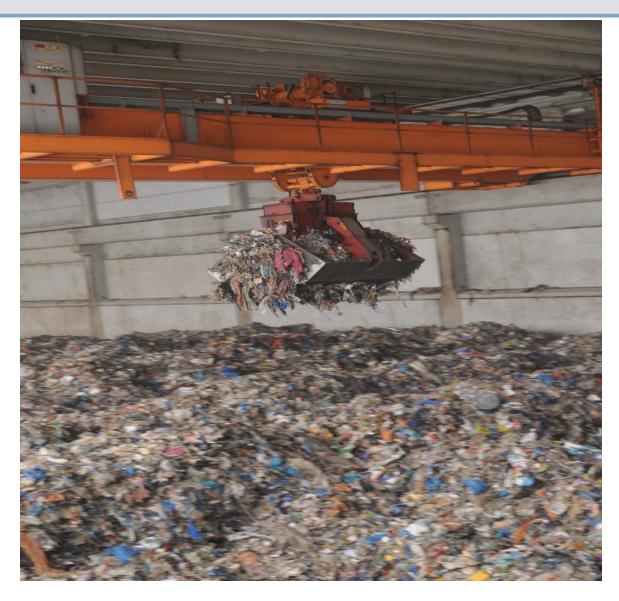


Frog Island, East London, 180,000 t/y MSW

Static Windrow MBT Technology

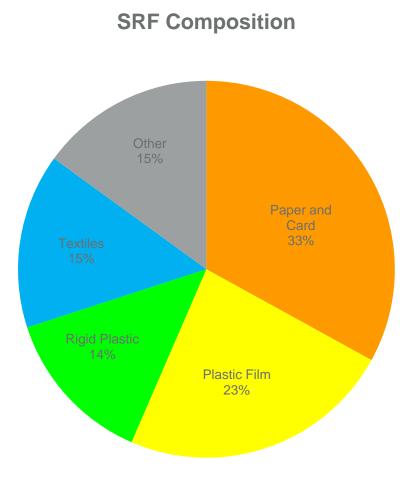
Imperial College London Biodrying Line Showing Floor Aeration Manifold and External Ducting




Mixed MSW Loaded into Biodrying Line After Shredding

Process Management and Control

Imperial College London After 14 Days, Biodried Material Is Transferred to the Refinement Process



Material Refinement: SRF, Metals, Fines

Average ELWA SRF Analysis (2012)

- Waste origin = 97% MSW, 3% commercial
- 85% of material
- 'Other'
- Material shred size
- Particle Size <50mm
- Energy potential (CV)
- Moisture content
- Ash content
- Chlorine
- Delivery method
- End use
- Production potential

- = paper, card, plastics & textiles
- misc combustibles, ferrous & non-ferrous, putrescible
- = 50mm (variable according to offtake market requirements)
- = 98%
- = 17.0MJ/kg (net CV)
- = 16.9%
- = 7%
- = 0.41%
- compacted & loose loaded on trailers for road haulage
- pre-heating, cement kiln precalciner
- = 27.5% of input, by weight

MBT Mass Balance

		Frog Island, Target		Jenkins Lane, June 2014		Cumbria 2014/15		Comment
Route	Outputs	t	%	t	%	t	%	
Diversion	SRF/RDF	115,679	64.3%	6,756	45.7%	55814	48.8%	Used as alternative fuel in cement production and in efw plant
Diversion	Moisture	52,380	29.1%	5,007	33.9%	31612	27.7%	Evaporative losses
Recycling	Mixed Metals	3,827	2.1%	283	1.9%	2622	2.3%	Recycled through the scrap metal industry
Recycling	Glass & Stone	1,776	1.0%	229	1.5%	8763	7.7%	Used as aggregate in road building
Recycling	Fines (0 - 6mm)	6,138	3.4%	91	0.6%	8518	7.5%	Goes for further treatment for land restoration
Landfill	Dust	200	0.1%	0	0.0%)			Extracted from refinement air treatment
Landfill	Fines (0 - 6mm)			548	3.7%	6882	6.0%	
Landfill	RDF			1,872	12.7%)			
	Total Input t	179,800	100.0%	14,787	100.0%	114,211	100%	,
	Summary							
	Diversion		93.3%		79.6%		76.5%	
	Recycling		6.%		4.1%		17.5%	
	Landfill		<u>0.10%</u>		<u>16.4%</u>		6.0%	
	Total		100%		100%		100%	

Imperial College London **Collaborative Research with Shanks to Increase MBT Performance**

<u>Aims</u>

1.Increase SRF and recyclate quality

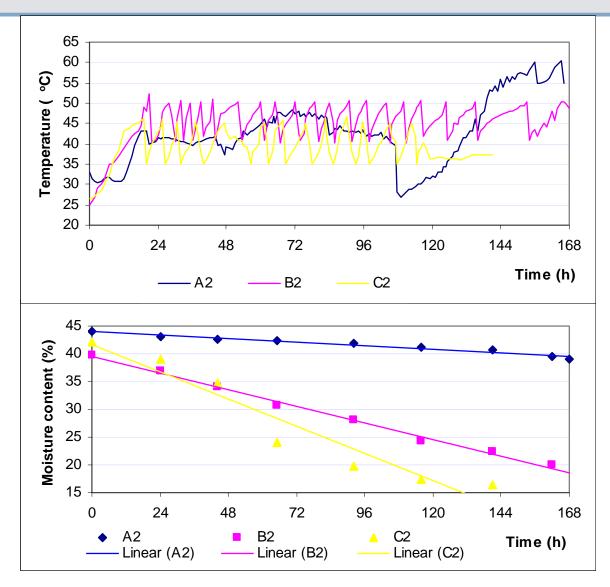
2.Reduce retention time and resource demand

Temperature

Gases and Humidity

Imperial College London Rotary Biodrying Research with Vassiliko Cement Works, Cyprus

- •Metabolic heat removes water from biodegradable waste
- •Critical control of microbial activity at low moisture
- •Optimised rotation, aeration and temperature management
- •Minimises drying time: <3 days
- Small plant foot print, reduced capital and operating costs
 Maximises calorific value, fuel homogeneity and recyclate recovery
 Direct combustion or pretreatment in advanced thermal treatment (gasification)



Page 15

© Imperial College London

Imperial College London Rotary Biodrying Technology Can Reduce Processing Time to ≤3 Days

Conclusions

- High diversion and recovery rates can be achieved close to 100%
- Captures all the residual value in waste
- Compatible with recycling systems
- Markets are necessary for fuel products or investment must include on-site energy production
- Fuel production to a specification (moisture, chemical composition):
 - Supports industrial fossil fuel reduction
 - Supports advanced thermal treatment processes
- Research to further optimise process and recovery efficiency