

Tinos, 3 July 2015

To assess the potential of HFW for biogas production.

The language of food waste...

- There is no common definition of food waste....
- WRAP: defines food waste as all food and drink discarded throughout the entire food chain.
- Food waste is a part of Bio-waste, which includes the biodegradable garden and park waste, food and kitchen waste from households, restaurants, caterers and retail premises, and comparable waste from food processing plants (*Directive 2008/98/EC*).
 - **Food waste** is a part of **Biodegradable waste** which includes any waste that is capable of undergoing anaerobic or aerobic decomposition, such as food and garden waste, and paper and paperboard *(Directive 1999/31/EC).*

Quantities..

- Based on European Commission, 76 kg per capita per year i.e. 208 g/c/d are produced.
- In total 40 Mt for the EU-27.

As it can be observed Household Food Waste (HFW) constitutes the highest percentage (42%).

Methodology

Household diary keeping

τγποΣ	ΦΛΟΥΔΙΑ ή ΞΕΦΛΟΥΔΙΣΜΑΤΑ ΠΟΥ ΔΕΝ ΤΡΩΓΟΝΤΑΙ	ΠΕΡΙΣΣΕΥΜΑΤΑ ΑΠΟ ΜΑΓΕΙΡΕΥΜΕΝΟ ΦΑΓΗΤΟ ΣΑΠΙΣΜΕΝΑ ή ΠΟΥ ΕΧΟΥΝ ΛΗΞΕ

Drinks and other special waste including tea bags, espresso capsules, yogurts and blood residues.

Preparation of HFW samples

Laboratory Analysis - NTUA

TS%: Carbolite AX30 Furnance

VS%: BI Barnstead/ Thermolyne 1400 Furnace

pH: METTLER TOLEDO MPC227

Conductivity: METTLER TOLEDO MPC227

TOC: Shimadzu TOC-VCSH - Solid Sample Module SSM 5000A

TN, TKN: Gerhard Kjeldatherm KB / KBL, Gerhard Vapodest 30s

Metals: Cu, Mn, Ni, Cd, Pb, Cr, Zn

Minerals κ, Na, Ca Mg VARIAN AA240FS Fast Sequential

BMP Assays ICE – HT FORTH

- The assessment on methane generation was based on the results of batch mesophilic Biochemical Methane Potential assays.
- The BMP tests were carried out laboratory of Biochemical Engineering and Environmental Technology of the Institute of Chemical Engineering Sciences (ICE-HT/FORTH) in Patras
- BMP experiments for all substrates were carried out at the in duplicate at 35°C according to Owens J.M. and Chynoweth D.P.: Biochemical methane potential of municipal solid waste (M. Sci. Technol, 27, 1-14 (1993).
- The produced gas composition in methane was quantified with a gas chromatograph (SRI 8610c MG#1) equipped with a thermal conductivity detector and a packed column with helium as carrier gas.

Results and Discussion (I)

Compositional analysis (w/w%) based on diary keeping

ICE-HT FORTH

Results and Discussion (II)

Average composition of all samples (w/w%) based on diary keeping

Avoidability between different food waste categories

In total 30% of the waste quantity recorded was avoidable and 70% unavoidable

Percentage of weight per household food waste category

Fruits	51,9%
Oranges	49,9%
Lemons	7,2%
Mandarins	17,3%
Apples	9,3%
Bananas	13,4%
Kiwis	0,5%
Strawberries	1,1%
Pears	1,2%

Vegetables	37,7%
Potatoes	14,6%
Lettuce	13,9%
Onions	12,8%
Cucumbers	9,9%
Broccoli	7,5%
Carrots	7,6%
Leafy salad	3,5%
Leeks	5,8%
Spinach	5,6%
Cabbages	2,7%
Rocket Salad	4,8%
Parsley	2,8%
Peppers	3,1%
Tomatoes	2,2%
Beans	2,3%
Mushrooms	0,5%
Dill	0,4%

Bread & bakery	2,1%
Bread	100%
Meat & Fish	3,0%
Deli meats	46,5%
Chicken	24,6%
Fish	18,7%
Meat	1,8%
Sausages	8,4%

Cooked food	4,7%	
Rice	29,8%	
Spaghetti	33,9%	
Mashed potatoes	15,5%	
Fresh Beans	6,1%	
Souvlaki pita	5,2%	
Mixed Salad	6,4%	
Lentils	3,1%	

Miscellaneous	0,6%
Olive	384
Cheese	71
Eggs	12

Results and Discussion (V)

Daily per capita HFW production g/c/d

Results and Discussion (VI)

(1) The results are calculated in dry matter basis.

Results and Discussion (VII)

3

VS%

47.9% - 55.6%

(1) The results are calculated in dry matter basis.

Metals and minerals

	Cu	Mn	Zn	к	Na	Ca	Mg
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
H1W1	1.72 ±1.23	16.90±2.66	22.61±7.14	19,476±2,016	1,988±349	8,978 ±1,188	2,818±913
H1W2	1.42±0.58	18.15±1.72	14.76±1.44	20,907 ±1,783	3,776 ±289	7,298 ±2,420	2,409±496
H1W3	0.53±0.93	8.48±3.22	20.51±3.34	11,573 ±3,107	3,695±898	2,859 ±507	807±190
H1W4	3.55±0.98	12.12±0.02	22.65±3.76	11,994 ±847	4,818±41	3,441 ±445	1,668±119
H2W1	0.55±0.16	19.73±0.12	12.11±10.50	8,775 ±284	6,556±225	4,623 ±260	1,707 ±43
H2W2	1.25±0.18	14.50±0.37	26.20±8.65	13,298 ±1,768	3,692±258	3,930 ±258	1,214 ±61
H2W3	3.60±0.27	17.94±1.03	17.29±0.96	14,349 ±914	2,452±75	6,820 ±250	1,431±71
H2W4	0.06±0.07	6.85±0.34	12.48±11.23	7,435±592	7,288±640	4,043 ±244	866 ±58
H3W1	0.00	9.72±0.56	16.80±2.44	12,105 ±879	1,413±79	4,793 ±250	1,179 ±59
H3W2	0.00	7.55±0.99	19.80±2.01	11,676±539	961±36	4,592 ±134	926 ±38
H3W3	0.00	6.92±0.37	14.12±12.28	11,409 ±3,345	835±265	4,844±1,463	851±249
H3W4	0.00	13.12±2.60	18.01±2.26	8,476 ±1,615	6,121±1,032	4,229 ±643	961±178
H4W1	14.34±1.65	22.02±1.43	83.34±52.99	14,762 ±1,047	4,141±162	4,173 ±231	1,709±114
H4W2	3.38±0.46	14.24±0.66	11.56±11.01	11,023 ±923	2,025±490	6,167±1,632	1,404±438
H4W3	0.57±0.59	8.06±0.23	14.68±0.64	9,491 ±406	2,024±94	3,501 ±168	763 ±63
H4W4	0.06±0.11	9.40±1.63	48.98±8.86	14,578±2,581	4,798±212	3,896 ±3,022	1,248 ±359
H5W1	0.09±0.12	12.03±0.40	9.09±7.89	12,834 ±526	6,111±1,135	20,011 ±2,575	2,914 ±995
H5W2	0.00	6.63±1.53	8.16±1.68	5,042 ±903	4,335±654	17,066 ±3,988	1,734 ±280
H5W3	3.08±5.33	21.35±4.24	29.12±11.86	15,882 ±453	2,234±860	36,997 ±4,716	2,159 ±864
H5W4	0.00	2.58±0.49	6.86±5.94	7,144 ±347	2,136 ±501	12,259 ±1,240	2,358±566

(1) The results are calculated in dry matter basis.

Results and Discussion (IX)

	L CH ₄ /kg TS	L CH4/kg VS
H1W1	362±7.9	389±8.6
H1W2	367±25.5	402±27.9
H1W3	413±0.5	442±0.5
H1W4	444±10.1	490±10.8
H2W1	459±59.1	493±63.6
H2W2	445±46.8	480±50.5
H2W3	287±10.6	308±11.4
H2W4	519±60.8	559±64.3
H3W1	265±12.1	283±12.8
H3W2	449±2.1	475±2.5
H3W3	441±2.5	466±2.7
H3W4	459±1.7	494±1.8
H4W1	366±1.4	429±1.5
H4W2	304±64.7	325±72.4
H4W3	368±19.7	386±21.0
H4W4	442±11.7	471±13.9
H5W1	408±4.3	456±4.6
H5W2	433±8.0	460±8.6
H5W3	334±25.5	395±27.9
H5W4	386±0.5	410±0.5

265 - 519 L CH₄/Kg TS

283 – 559 L CH₄/Kg VS

- 'Fruit' and 'Vegetable' waste constitute the main waste categories of HFW recorded, accounting for almost 90%.
- In total 30% of the HFW could have been prevented.
- 30% of 'Fruit' and 'Vegetable' waste could have been avoided.
- Although variations exist, the average daily per year production of HFW was slightly higher (96 kg) to the one estimated for the EU-27 (76kg).
- HFW is characterized as having acidic pH values, high VS content and high TOC content.
- Based on the conducted BMP tests, source separated HFW are great substrates for high methane yields.

Thank you for your attention

katerinavalta@gmail.com

Unit of Environmental Science and Technology (UEST), School of Chemical Engineering, National Technical University of Athens (NTUA)

> Tel: +30 210 7722334 Fax: +30 210 7723285