TINOS 2015 3rd International Conference on Sustainable Solid Waste Management 2-4 July 2015

ODORS AND GAS EMISSIONS DURING THE CERAMIC SINTERING OF SEWAGE SLUDGE. GUIDELINES FOR INDUSTRIAL IMPLEMENTATION

L.V. Cremades, C. Soriano, J.A. Cusidó

Universitat Politècnica de Catalunya

joan.antoni.cusido@upc.edu

SEWAGE SLUDGE FROM BIOLOGICAL PROCESS IN WASTE WATER TREATMENT PLANTS (WWTP)

 Typical production of sludge: about 25 - 50 ton/day (0.6 - 1 kg/inhabitant/day approx.)

CLAY BRICK PRODUCTION WITH A MAXIMUM OF 25% OF SEWAGE SLUDGE WITH 60% HUMIDITY

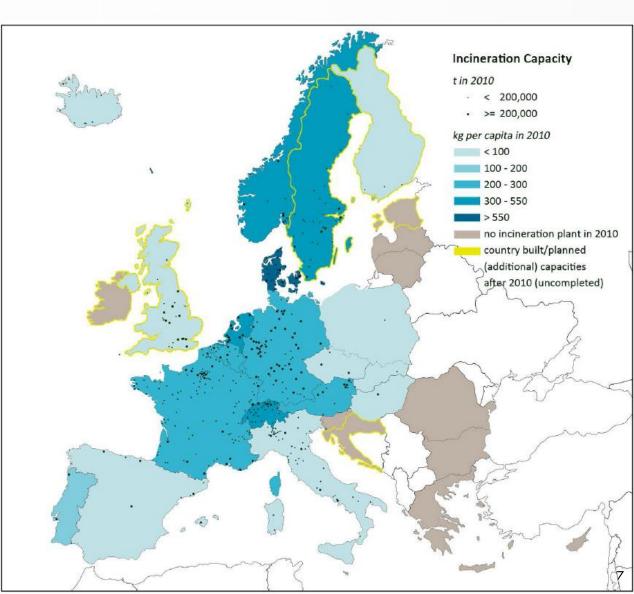
- Any conventional ceramic plant can be easily adapted to make products that include clays + sewage sludge.
- Special care to handle hazardous wastes and treatment of washing and/or filtration of particles and gases in the sintering. In both cases it is not necessary to use extreme technologies.

IMPROVING SUCCESFUL TECHNICAL PROPERTIES

- Lightness (60% of weight compared to conventional clay brick)
- Ductility (low fragility, good for sailing races)
- Sound proofing
- Acceptable mechanical behavior for non-structural enclosures (compression resistance of 50 - 100 kg/cm²)

SUCCESFUL ENVIRONMENTAL PROPERTIES

- Final zero waste (waste disposal)
- Final product without leachate. No toxicity to the user
- Thermal destruction of toxic and hazardous waste. Residence time in the oven = 20 hours (at 1000°C)
- Inerting by vitrification of heavy metals


WHAT IS THE PROBLEM IN THE INDUSTRIAL PRODUCTION?

- Emissions of odors and gases during sintering of sewage sludge in ceramic matrix
- Sewage sludges in ceramic matrix: thermal treatments possible
- Incineration, gasification or pyrolysis thermal process
 → PYROLYSIS (<<< gas emissions)
- "Pyrolisys seems to be the optimal thermochemical option treatment compared to incineration and gasification (related sewage sludges)" [M.C. Samolada, A.A. Zabaniotou. Waste Management, 34: 411-420 (2014)]

WHY NOT PYROLYSIS OF SEWAGE SLUDGE?

 Incineration is more hazardous or polluting than inerting sewage sludge in ceramic plants.

See incineration plants in EU

EXPERIMENTAL LAB DATA OF GASES AND ODORS (1/3)

Table 1. VOC emitted during the firing process ^a.

			Clay/sludge- brick	Clay-brick firing	TLV-TWA	OD ⁶ (µg m ⁻³)	OR ^c (µg m ⁻³)	
Family	VOC	Formula	firing	emissions (µg m ⁻³)	(µg m ⁻³)			
			emissions					
			(µg m ⁻³)					
2	Trichlorofluoromethane	CC1 ₃ F	0.0	571.9	5620			
Chlorinated	Chloromethane	CH ₃ C1	536.5	0.0		20462	20462	
hydrocarbons	Dichloromethane	CH ₂ Cl ₂	1846.7	0.0	174000	550008	790637	
	Trichloromethane	CHC13	179.5	940.5				
Mercaptans	Methylmercaptan	CH3SH	16.0	0.0	980	1.1	2.0	
2	Carbon disulfide	CS ₂	728.8	142.7	31000	1306.3	1306.3	
Sulfides	Dimethyl disulfide	S2(CH3)2	68.4	0.0		7.7		
	Dimethyl trisulfide	S3(CH3)2	0.0	0.0		5.2		
Thiocianates	Methyl thiocyanate	CH ₃ SCN	169.9	0.0				
Aliphatic	Propanone	C3H6O	1142.4	0.0		147160	308561	
ketones	3-Methyl-3-buten-2- one	C5H8O	151.8	0.0				
Aliphatic	2-Methyl propenal	C₄H₀O	303.5	0.0				
aldehydes	3-Methyl butanal	C5H10O	305.6	0.0				
	Hexanal	C6H12O	104.7	0.0				
	Heptanal	C7H14O	183.8	0.0				
Aromatic	Furfural	C5H4O2	255.4	0.0	7900	2498.6	2498.6	
aldehydes	Benzoaldehyde	C7H6O	594.2	0.0				
	Hydroxybenzaldehyde	C7H6O2	5.3	0.0				
Aliphatic nitriles	Acetonitrile	C ₂ H ₃ N	1688.5	0.0	67000			
	Benzonitrile	C7H5N	318.5	0.0				

8

EXPERIMENTAL LAB DATA OF GASES AND ODORS (2/3)

Aliphatic	Acetic	C2H4O2	2533.8	0.0	25000	181.7							-	·
acids	2-Methylpropanoic	$C_4H_8O_2$	32.1	0.0										
Aliphatic	Methyl acetate	C ₃ H ₆ O	238.3	0.0	606000	427238								
esters														
	Pyrazine	C4H4N2	160.3	0.0										
Aromatic	Pyridine	C5H5N	454.2	0.0	16000	2133.7	2392.4							
amines	4-Methylpyrazine	$C_5H_6N_2$	226.6	0.0										
	4-Methylpiridine	C ₆ H ₇ N	56.6	0.0										
Aliphatic	Acetamide	C ₂ H ₅ NO	237.2	0.0										
amides	3-Methylbutanamide	C ₅ H ₁₁ NO	0.0	0.0										
Monoterpenes	α-Pinene	C10H16	11.8	24.5		64								
05	N-nonane	C ₉ H ₂₀	160.3	0.0	1050000									
	N-decane	C10H22	536.5	37.3										
Linear	N-undecane	C11H24	0.0	37.3										
aliphatic	N-dodecane	C12H26	89.8	0.0				B 10000 1000					101710	
hydrocarbons	N-tridecane	C13H28	361.2	0.0				Benzene	C ₆ H ₆	961.8	92.7	32000	194712	
	N-tetradecane	C14H30	0.0	0.0			Monocyclic	Toluene	C_7H_8	582.4	182.1	188000	6023.9	41414
	N-pentadecane	C15H32	0.0	0.0			11777774731002502			22272			2.222.2	
	N-hexadecane	C16H34	245.8	0.0			aromatic	Ethylbenzene	C8H10	56.6	0.0	434000	2602.7	2602.7
5	2,2-Dimethylpentane	C7H16	5686.4	10693.3			hydrocarbons	m+p -Xylene	C8H10	190.2	22.4	434000	86757.2	
Branched	Nonanes	C9H20	0.0	0.0										
aliphatic	Decanes	C10H22	0.0	0.0				Styrene	C8H10	166.7	0.0	434000	85120.3	
hydrocarbons	Undecanes	C11H24	0.0	0.0										
Polycyclic	Decahydronaphthalene	C12H18	0.0	0.0										
hydrocarbons	Methyl-decahydronaph	- C ₁₃ H ₂₀	0.0	0.0			^a Units are r	eferred to standard cond	itions: T = 25°	PC and P = 1	atm.			
	thalene					^b Odour Det	ection Threshold.							
							^c Odour Rec	ognition Threshold.						Ģ

^c Odour Recognition Threshold.

EXPERIMENTAL LAB DATA OF GASES AND ODORS (3/3)

 Table 2. Mean emission levels of selected major inorganic compounds during the firing process and maximum limits allowed in special wastes incinerators in Catalonia^a.

Pollutant	Units	Clay/sludge	Clay brick	Limit allowed ^b	
		brick			
Particles	mg Nm ⁻³	48.3	11.4	20	
SO ₂	mg Nm ⁻³	43	8.4	200	
со	mg Nm ⁻³	83	26	125	
NO _x	$\mathrm{mg}\mathrm{Nm}^{-3}\mathrm{NO}_2$	811	805	616	
HCl	${ m mgNm^{-3}}$	112	0.7	60	
HF	mg Nm ⁻³	1.2	1.6	4	
Cd+Tl	mg Nm ⁻³	0.007	n.d.¢	0.1	
Sb+As+Pb+Cr+Co+	${ m mgNm^{-3}}$	0.44	0.02	1	
+Cu+Mn+Ni+V+Sn					

^a Units are referred to normal conditions: T = 0 °C, P = 1 atm, 11 v.% O₂ and dry gas.

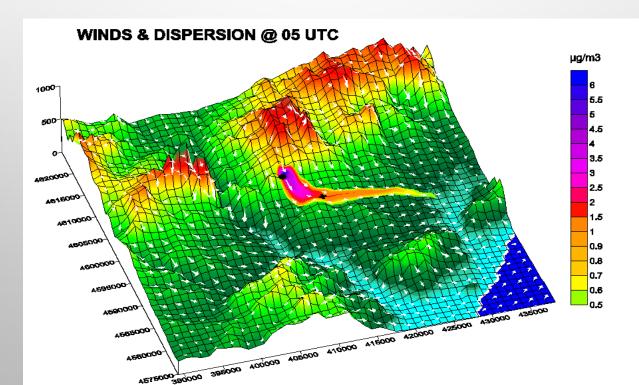
^b Decree 323/1994 of the Generalitat de Catalunya that regulates the facilities for waste incineration and determines their atmospheric emission limits. Values correspond to the strictest limits, i.e., those applicable to special waste incinerators (DOGC, 1994).

^c "not detected".

GASES AND ODORS DATA IN AN INDUSTRIAL TEST

- VOCs obtained from an industrial test were not the same than in the lab (conditions were different).
- 57 compounds detected. The most significant ones were:
 - benzene (C₆H₆) : 1172 mg/Nm³
 - dimethyl disulfide (C₂H₆S₂) : 1383 mg/Nm³
 - toluene (C₇H₈) : 926 mg/Nm³
 - 4-methylpentanenitrile (C₆H₁₁N) : 697 mg/Nm³
 - benzonitrile + isociane-benzene (C₇H₅N + C₇H₅) : 1003 mg/Nm³
- No dioxins or furans were detected due to a residence time of several hours at temperatures >1000 $^\circ \rm C$
- Odors were similar to those in burning of textile materials (rags); in certain weather conditions must be corrected.

11


GUIDELINES (1/2)

 On the workplace : careful handling of wastes; use of mask and gloves; tower for washing gases; cyclones for removing particles; system of gas/gas exchanger and post-combustion cycle; biological filters or others for removing odors and other systems recomended by EPA and EU regulations.

12

GUIDELINES (2/2)

- Regarding the plant location (either new or adapted from a pre-existing one): simulation of air dispersion pollutants.
- Monitoring emissions/immissions (particles, SO₂, CO, NO_x, HCl, odors, etc).
- Information policy.

CONCLUSIONS

- Production of ceramic materials by inerting sewage sludge is a solution for removing pathogens and vitrifying heavy metals into ceramic matrix.
- Production of ceramic material for construction from clay/sewage sludge can achieve a double goal: <u>final and secure disposal of a hazardous waste and its</u> <u>valorization in a comercial product (clay bricks).</u>
- Compared to incineration or gasification thermal processes, <u>pyrolysis</u> in ceramic matrix may be the best option of valorization of sewage sludge.
- For the implementation of an industrial production, lab studies should be carried out, since sludges (as well as clays) have very varying characteristics depending of their site of origin. The application of the regulations of each country, as well as the existence of technologies avalaible for the treatment of gases, odors and particulates, would allow a clean production in accordance with legal standards.