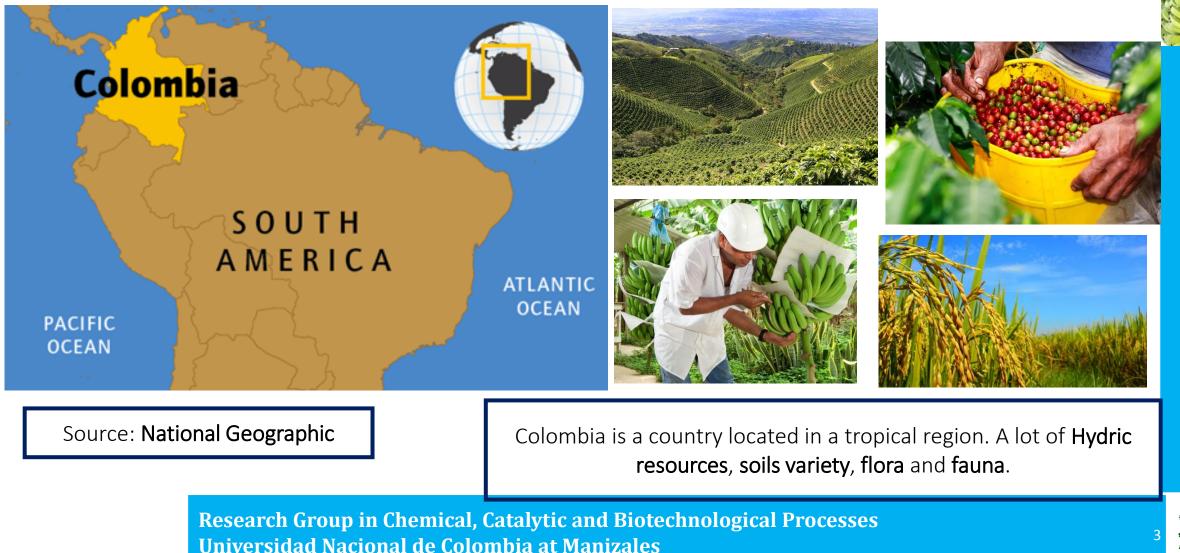

Energy producing Biorefineries for Agricultural Waste Management: The Colombian Case

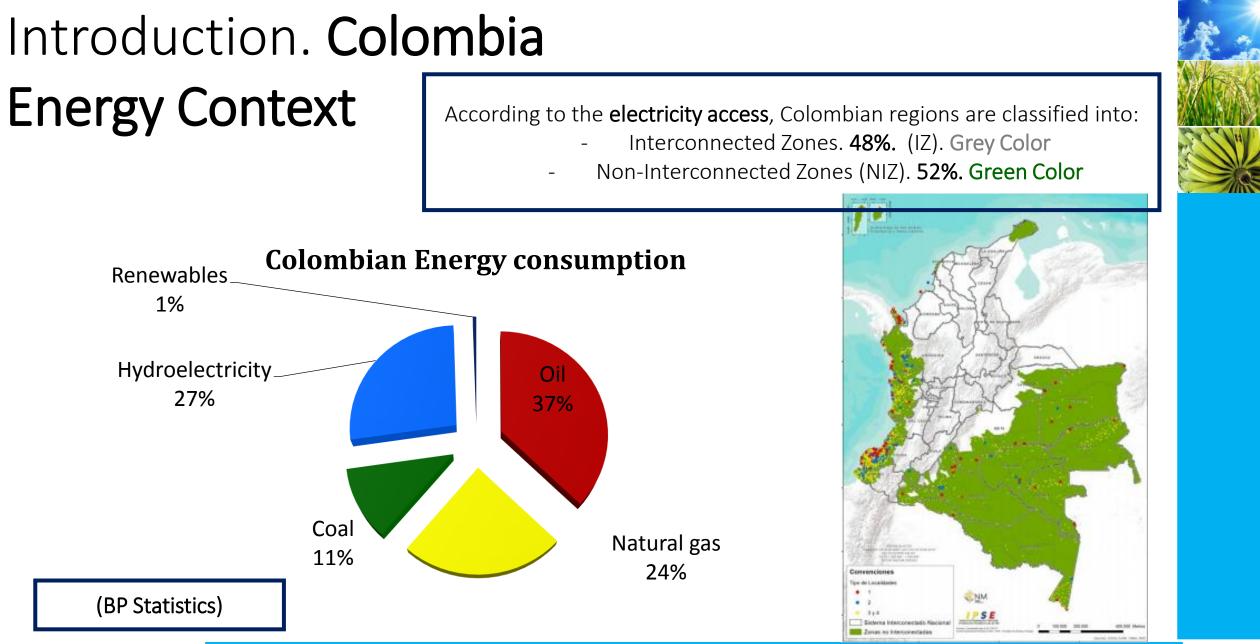
Laura V. Daza Serna^a, Carlos A. Cardona Alzate.^{b*} Instituto de Biotecnología y Agroindustria. Departamento de Ingeniería Química Universidad Nacional de Colombia at Manizales, Manizales-Colombia Ivdazas@unal.edu.co_^a, ccardonaal@unal.edu.co_^b



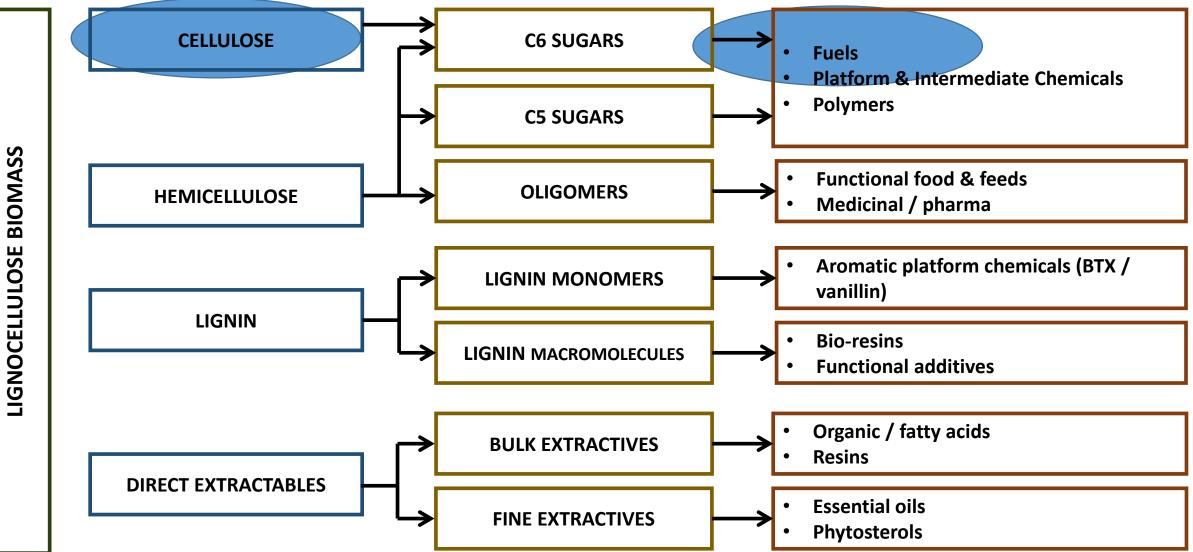
Introduction. Latin America Energetic Context

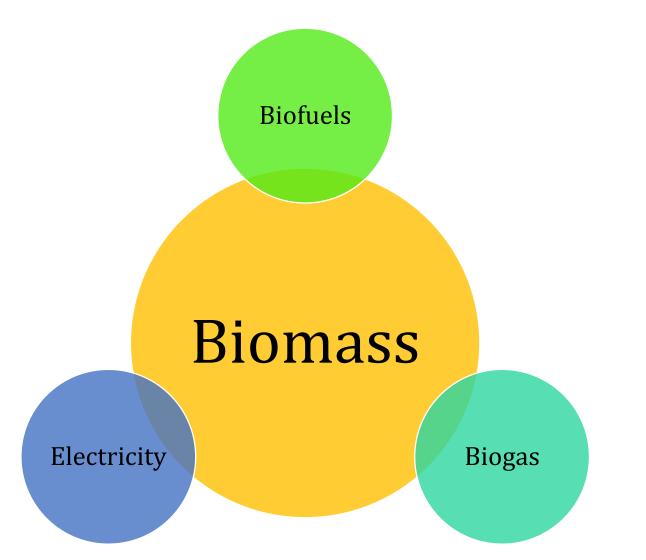
Introduction. Colombia location and biodiversity

Introduction. Different Feedstocks:1st, 2nd, 3rd generations

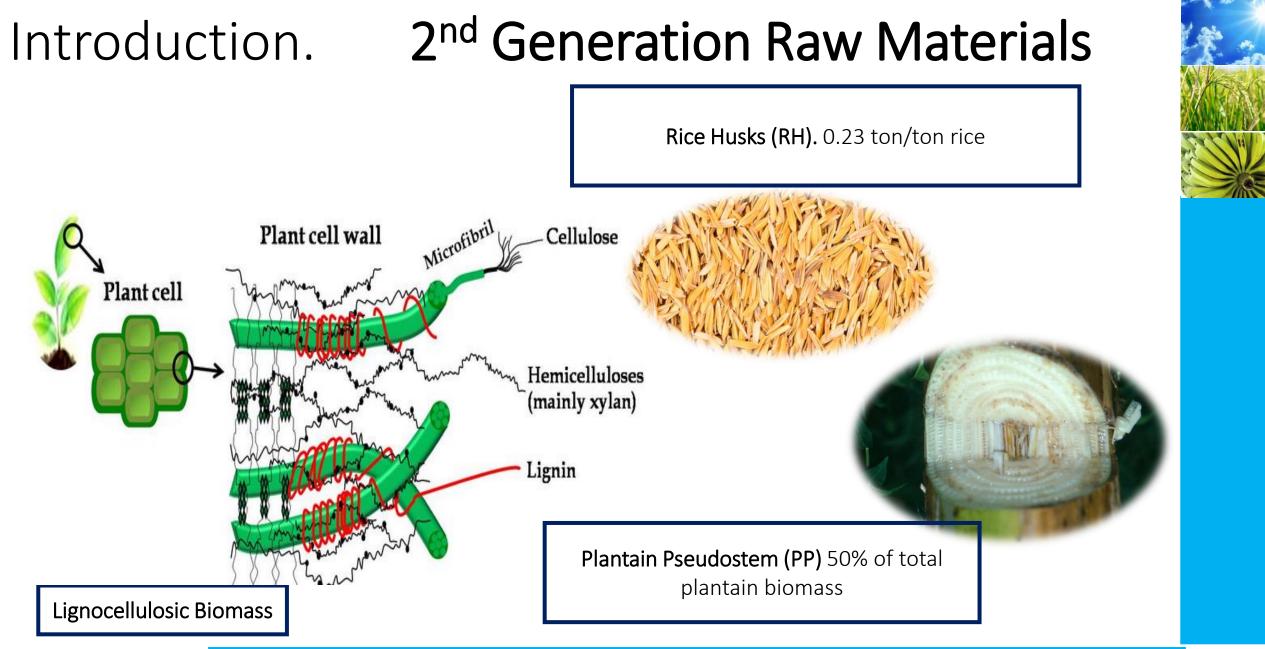

Introduction. Agricultural Residues in Colombian Context

Сгор	Residue	Residues Generated [ton/year]
	Coffee Pulp	301.848
Coffee	Spent Coffee	257.962
Cocoa	Cocoa Husks	59.756
Rice	Rice Husks	562.964
Plantain	Plantain Pseudostem	1.699.137
Cassava	Cassava stem	91.335


Grupo de Investigación en Procesos Químicos, Catalíticos y Biotecnológicos Universidad Nacional de Colombia sede Manizales



Introduction. Chemical and Biochemical


Transformations

Introduction. Biorefineries just for energy

Methodology

Experimental Characterization

-Extractives

- Cellulose
- -Hemicellulose
 - -Lignin
 - Ash

Techno-Economic Evaluation

Based on reported kinetics and experimental data for 10,000 kg/h

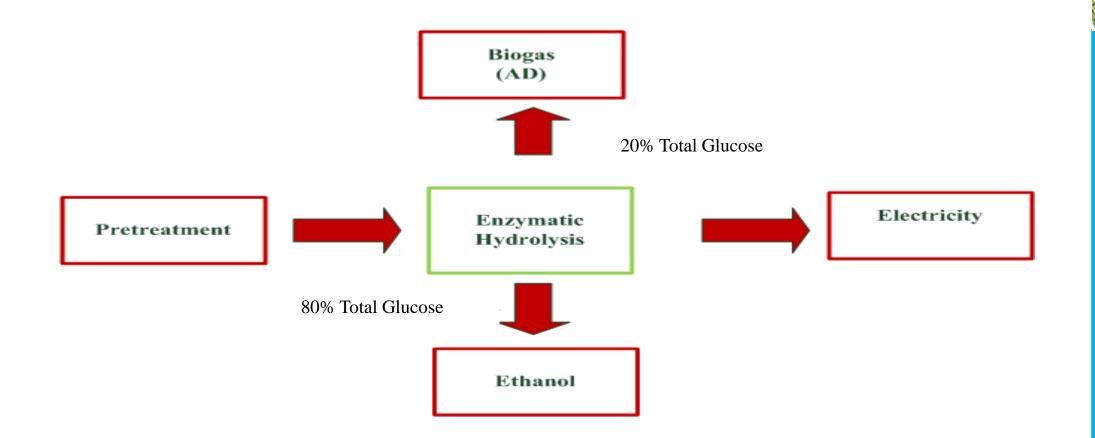
Hierarchization Sequentiation Integration*

Methodology

Methodological Approach

Process synthesis following a knowledge-based approach (Hierarchy, sequence and integration concepts)

Mass and Energy Balances


Generated in *Aspen Plus V8.2* (AspenTech) after flowsheet modelling

Economic Analysis

Calculated using Aspen Process Economic Analyzer at the Colombian conditions

Methodology. Process Scheme

Methodology. Used Technologies

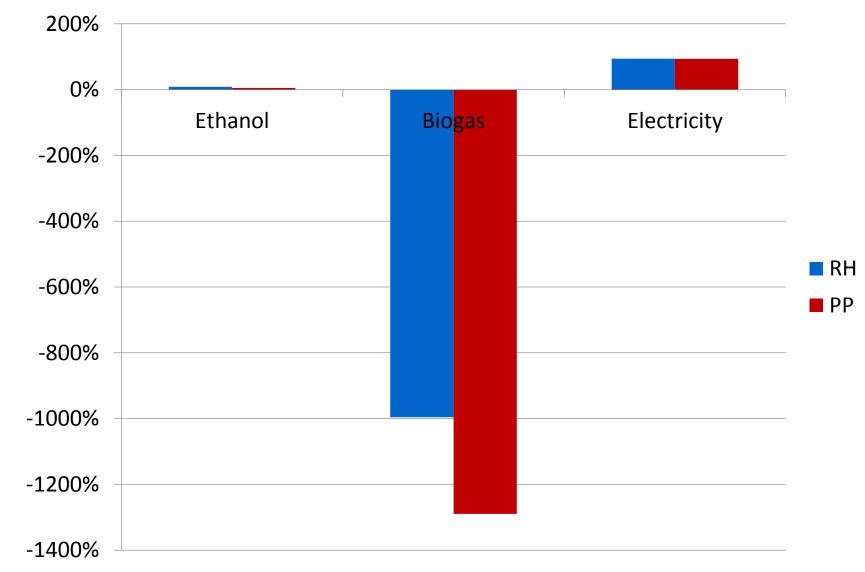
Process		Used Technology	Reference
Lignocellulosic pr	etreatment	Diluted Sulfuric Acid 2% (v/v). 121 °C, 15 psi, verified experimentally in this work	Esteghillian et al .
Enzymatic Hydrol	ysis	Cellulases cocktail. 50°C, pH 4.8 Sodium citrate buffer, , verified experimentally in this work	Morales- Rodriguez et al.
Ethanol Productio	on	Fermentation by Saccharomyces cerevisiae yeast. 30°C. Separation by distillation train and dehydration by molecular sieves, , verified experimentally in this work	Birol et al Pitt et al
Biogas Production	n	Anaerobic digestion using diluted glucose 2 g/L as substrate. 35°C, verified experimentally in this work	Kalyuzhnyi and Davlyatshina.
Electricity Produc	tion	Combustion turbine, not verified experimentally	Rincón et al.
Research Group in Chemical, Catalytic and Biotechnological Processes Universidad Nacional de Colombia at Manizales			

Results. Experimental Characterization RH.

Feature	This Work	Literature	Reference
Moisture	11± 0.5%	11.7 %	Srinivas and
			Reddy [36]
Extractives ^(db)	7 ± 1%	3.35 %	
Cellulose ^(db)	40 ± 2%	26.45 %	
Hemicellulose ^(db)	16 ± 3%	27.29 %	Quintero et al
Lignin ^(db)	26 ± 7%	28.03 %	[37]
Ash ^(db)	11 ± 1%	14.89 %	

Results. Experimental Characterization PP.

Feature	This Work	Literature	Reference
Moisture	83 ± 3%	85 %	Pérez [23]
Extractives ^(db)	19 ± 1%	8.1 %	
Cellulose ^(db)	41± 7%	40.2 %	_
Hemicellulose ^(db)	19± 5%	25 %	Cordeiro et
Lignin ^(db)	14± 4%	14.6 %	al[38]
Ash ^(db)	8±0.1%	15.6 %	_


Results. Techno-economic results

Production Prices				
	RH	РР	Market price	Source
Ethanol (USD/kg)	0.88	0.91	0.96	Fedebiocombustibles*
Biogas (USD/m ³)	5.37	6.81	0.49	Gas Natural Fenosa*
Electricity (USD/kWh)	0.0097	0.0099	0.16	EPM *

*Local information

Results. Profit margin

Conclusions

The results showed that it is possible to take advantage of agricultural wastes under biorefinery scheme but considering additional products such as biogas through sugars platform is not interesting. Sugars as raw material for metanogenesis makes very expensive the raw material for biogas,

The problems with the AD stage is that it is really difficult to reach the productivities of electricity and ethanol. Moisture content represents one bottleneck for waste valorization of plantain residues, considering the increases in costs associated to drying process and low available dry matter to be transformed.

Conclusions

In this work a biorefiney scheme at high scale was firstly proposed to diversify the needings supply in energy for those isolated zones where these residues are produced and not totally managed. However, for rice husk and plantain it is obvious that the energy solution will be just the generation. Gasification in these cases is going to be the best option, working very good and with good profits even at small scales.

Acknowledgments

The authors express their gratitude to the Universidad Nacional de Colombia at Manizales, the Biotechnology and Angroindustry Institute as well as to COLCIENCIAS for the financial support of this research through the program 'Jóvenes Investigadores, Convocatoria 617 de 2013'.

References

-J. Moncada, J. a. Tamayo, and C. a. Cardona, "Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery," *Chem. Eng. Sci.*, vol. 118, pp. 126–140, 2014.

-R. Pérez, "Roots, tubers, bananas and plantains," in *Feeding pigs in the tropics*, Rome, Italy: FAO, 1997.

-S. V Kalyuzhnyi and M. A. Davlyatshina, "Batch Anaerobic Digestion of Glucose and its Mathematical Modeling. I.Kinetic Investigations," *Bioresour. Technol.*, vol. 59, pp. 73–80, 1997. -T. Srinivas and B. V. Reddy, "Hybrid solar-biomass power plant without energy storage," *Case Stud. Therm. Eng.*, vol. 2, pp. 75–81, 2014.

-N. Cordeiro, M. N. Belgacem, I. C. Torres, and J. C. V. P. Moura, "Chemical composition and pulping of banana pseudo-stems," *Ind. Crops Prod.*, vol. 19, no. 2004, pp. 147–154, 2003.

-C. Gissén, T. Prade, E. Kreuger, I. A. Nges, H. Rosenqvist, S. E. Svensson, M. Lantz, J. E. Mattsson, P. Börjesson, and L. Björnsson, "Comparing energy crops for biogas production - Yields, energy input and costs in cultivation using digestate and mineral fertilisation," *Biomass and Bioenergy*, vol. 64, pp. 199–210, 2014.

-L. E. Rincon, J. Moncada Botero, and C. A. Cardona Alzate, Catalytic Systems for Integral Transformations of Oil Plants through Biorefinery concept., First Edit. Manizales, Colombia: Universidad Nacional de Colombia sede Manizales, 2013.

References

•R. Morales-rodriguez, K. V Gernaey, A. S. Meyer, and G. Sin, "A Mathematical Model for Simultaneous Saccharification and Co-fermentation (SSCF) of C6 and C5 Sugars," *Chinese J. Chem. Eng.*, vol. 19, no. 2, pp. 185–191, 2010.

•G. Birol, P. Doruker, B. Kardar, Z. Onsan, and K. Ulgen, "Mathematical description of ethanol fermentation by immobilised Saccharomyces cerevisiae," *Process Biochem.*, vol. 33, pp. 763–771, 1998.

•W. W. Pitt, G. L. Haag, and D. D. Lee, "Recovery of ethanol from fermentation broths using selective sorption-desorption.," *Biotechnol. Bioeng.*, vol. 25, pp. 123–131, 1983.

THANK YOU