### Effect of Light/Dark cycle and carbon source on Lipid Production by *Chlorella pyrenoidosa* using Agro Waste Water Malaysia

Co-Authors: Hesam Kamyab, Mohd Fadhil Md Din, Shazwin Mat Taib, Lim Jeng Shiun and Chew Tin Lee

Presenter : Lim Jeng Shiun

Universiti Teknologi Malaysia (UTM)



#### **CONTENTS**

- 1. Background information
- 2. Research gap
- 3. Research Methodology
- 4. Result & Discussion
- 5. Conclusion



# Overview of palm oil mill



## Source of Palm Oil Mill Effluent (POME) Fresh Fruit Bunches (FFB)



Source: Biomethane Production from Palm Oil Mill Effluent (Pome) in a Semi-commercial Closed Anaerobic Digester

|    | Char                  | acteristic of the sampled POME |                      |
|----|-----------------------|--------------------------------|----------------------|
| No | Parameter*            | Concentration range            | Malaysia<br>Standard |
|    |                       | (mg/L)                         | (mg/L)               |
| 1  | рН                    | 4.15 - 4.4.5                   | 6.0 – 9.0            |
| 2  | COD                   | 1,350 - 2,120                  | 50-100               |
| 3  | Soluble COD           | 20,500 - 24,500                |                      |
| 4  | BOD                   | 300 - 400                      | 20-50                |
| 5  | Total volatile solid  | 27,300 - 30,150                | 100-200              |
| 6  | Total Suspended Solid | 15,660 - 23,560                | 50-100               |
| 7  | Total phosphorus      | 200 - 600                      |                      |
| 8  | Total nitrogen        | 500 - 800                      |                      |

ISWM - TINOS

Can cause significant environmental effects like oxygen depletion if it is discharged without efficient treatment.

the second the second of DOME

### **Conventional treatment method**

- Anaerobic treatment:
  - Long retention time, large area required.
- Aerobic:

High energy requirement.

Membrane:

Short membrane life, membrane fouling, expensive.

Evaporation:

High energy consumption.



# Concept of integrated palm oil based bio-refinery



#### FACTOR OF GROWTH: MICROALGAE



 Environmental stress such as nutrient level and light intensity induces the growth of algae

POME is a source of enormous organic and nutrient content, considered favorable for the growth several types of microalgal species to produce



#### MICROALGAE

- Microalgae are the primary producers of oxygen on the planet, generating 40-50% of the world's atmospheric oxygen.
- 30,000 known species of microalgae and more are being discovered and categorized, however only a few hundred are actively being investigated and very few produce industrially.
- Depending on species, microalgae produce many different kinds of lipids, hydrocarbons and protein.



#### POTENTIAL OF MICROALGAE IN WASTE WATER TREATMENT

Inhibit the microalgae growth



Waste water treatment



Promoting the microalgae growth





Waste-to-wealth opportunities

#### **ADVANTAGEOUS OF MICROALGAE**

- Faster grow
- CO2 Capture
- High lipid &fatty acid
- Use saline, brackish, waste waters, seawater
- Do not compete with feed crops
- Wastewater treatment
- Oil from algae is 7-31 times greater than palm oil



Sources :(Lam and Lee, 2011).







### **Research review**

- Most studies reported that under intermittent illumination, higher specific light absorption together with the lower specific growth rate most probably contribute to the reduction of the biomass production of *C. pyrenoidosa*.
- However, with C. reinhardtii, the amount of chlorophyll a content was doubled under the intermittent illumination in comparison to continuous illumination. Due to the increase of chlorophyll a content under light/dark cycles, and lead to the increase of its specific light absorption. (Janssen et al., 1999)
- Whether the continuous illumination is beneficial to promote the growth of biomass and/or chlorophyll a, it could be varied based on specific strain of microalgae and possibly the combination of operating conditions including growth medium.



# Aim of the study

- To evaluate the growth of of microalgae species, i.e., *Chlorella pyrenoidosa, a* locally isolated species in POME
- To evaluate effect of light regime (photo period) and C/N ratio on the biomass and lipid production



## **Research Methodology**

#### Culture medium and source of POME

- C. pyrenoidosa was isolated from a POME pond located in Johor Palm Oil Mill, Kahang, Johor, Malaysia.
- Cultivated and maintained in a 10-fold diluted POME provided with cultural conditions of 24°C- 26°C, with photoperiod of 8h:16h (in Light: in Dark), pH ranging between 6.5-7.5, and light intensity of 150 mol m<sup>2</sup> s<sup>-1</sup>
- POME was diluted 10 times to reduce the shadings effect on the microalgae growth. The growth of *C. pyrenoidosa* was assessed by optical density (OD) at a wavelength of 600 nm, chlorophyll content.

### **Research Methodology**



#### **RESEARCH METHODOLOGY (CONT'D)**

To characterize the produced lipid content from biomass using conventional techniques in order to find lipid Production







#### **RESULTS AND DISCUSSION**

Effect of photo period for the production of biomass and lipid by *Chlorella Pyrenoidosa* in POME



### **RESULTS AND DISCUSSION**

 Organic Carbon Substrate and Nutrient Utilization Rate via C. pyrenoidosa from Settled Raw Palm Oil Mill Effluent (POME) for Lipid Production



#### CONCLUSION

- The highest lipid content achieved when *C.pyrenoidosa* cultured under continuous light (24 hr) at 18.00 mg lipid/mg CDW.
- In conclusion, *C. pyrenoidosa* was found to produce highest lipid when grown under C:TN ratio of 100:6, under continuous illumination and with OLR of 36 kg COD/m<sup>3</sup>.d.







LIM Jeng Shiun Universiti Teknologi Malaysia Jslim@cheme.utm.my



