

3rd International Conference on Solid Waste Management, Tinos2015

July 02-04 2013, Tinos Island, Greece

July 02-04 2013, Tinos Island, Greece

Group ABORATORY OF CHEMICAL PROCESS AND PLANT DESIGN

"Implementation of agrowaste bioenergy in Mediterranean countries with sustainability"

P. Manara, A. Zabaniotou

Ε. Π. Ανταγωνιστικότητα και Επιχειρηματικότητα (ΕΠΑΝ ΙΙ), ΠΕΠ Μακεδονίας – Θράκης, ΠΕΠ Κρήτης και Νήσων Αιγαίου, ΠΕΠ Θεσσαλίας – Στερεάς Ελλάδας – Ηπείρου, ΠΕΠ Αττικής

Biomass & Waste Group

Main Research Activities

- □ Applied & basic research concerning the thermochemical conversion of biomass and waste into energy and high added value materials.
- □ Thermochemical Valorization of Biomass and Waste both by pyrolysis and gasification: Lab and Pilot scale Experiments & Modeling and simulation of such processes using commercial software.
- □ Assessment of bio-energy plants and renewable energy sources units through detailed techno-economic studies
- Design of integrated energy systems of conjunct thermochemical processes with ICEs and fuel cells.

Goal of Biomass Group

Development of new processes & products for valorisation of biomass and waste

Biomass resources are prevalent and widespread all over the Mediterranean

Wood Residues

- Sawdust
- Wood chips
- Wood waste
 - Cotton gins
 - Vineyard Prunings
 - Olive tree prunings
 - Almond tree Prunings

Agricultural Residues

- Corn Stalks
- Rice hulls
- Olive kernel
- Peach Kernel
- Grape pomace/seeds

Energy Crop Residues

- Sunflower straw
- Soya
- rapeseed

The SMARt CHP concept

- A mobile BIOENERGY production unit able to utilize a variety of biomass residues streams generated in an energy efficient and environmentally friendly way → <u>Decentralized CHP</u>
- Issues to be examined
 - Fuel feed versatility
 - Bioenergy unit capability of handling wide variety of feedstock
 - Agricultural residue logistic management

The Proposed Bioenergy System

Coupling two applied technologies

Mobile small scale bioenergy unit

The CHP unit

Methodology

Sustainability assessment methodology included:

- the definition of the region's biomass availability profile,
- the demonstrative operation and finally the
- economic, environmental and social impact analysis

By

SELECTING, DEVELOPING and MEASURING

METRICS AND INDICATORS.

Residual biomass availability in W. Macedonia

Demonstrative operation

- Location: Thessaloniki & W. Macedonia
- Demonstrative operation at 4 locations for 2 weeks each

Aims

Technology application in real conditions

Promotion to local actors & entrepreneurs

Biomass energy potential evaluation

Operation in an agro-industrial environment

Bioenergy System Performance Evaluation

Biomass consumption [kg]

Key factors for successful operation:

- Stability in long term operation
- ✤ Efficiency
- Fuel feed versatility

Waste biomass to "Green" electricity Demonstration results

Producer gas Composition, %vol

Electricity production, KWel

Sustainability considerations:

Environment, society, economy

Bioenergy plans should be promoted and developed according to

sustainability criteria

Sustainability considerations are taken into account *in the production, promotion and use of bioenergy*, with a view *to minimize risks of negative impacts and maximize benefits*, in the immediate and long term life of the plants.

→ METRICS & INDICATORS

Metrics & Indicators

- ✓ Quantitative or qualitative factors
- Formulated to convey a single meaningful message &
- Should be judged on the scale of acceptable standards of performance

Metrics & Indicators provide means to :

- measure the degree of achievement,
- reflect changes demonstrate trends –verify replicability
- ✤ assess performance or compliance.

Environmental Sustainability

Environmental sustainability is related to energy, resources and emissions savings, "carbon footprint", waste production

Three basic categories of metrics:

Thermodynamic (efficiency)

Green House Gas Emissions

➤Waste production

Thermodynamic metrics Shankey Diagram

Nitrous oxide (N2O) emissions and carbon dioxide (CO2) emissions were considered to calculate CO_{2eq}/year

our system boundaries that are defined from waste storage to end

use.

Waste production

Tars & solid waste:

Tars could treated within the waste water treatment plant of an agro-industry or disposed off as waste for offsite controlled treatment

→tar disposal cost 0.9-1.3 €/kg (field research)

Solid waste (ash, accumulated particles downstream the gas cleaning system) are nutrient sources for soil fertilization (biochar)

Social Sustainability

Social sustainability is related to employment and stability of livelihood in the local communities, whereas from the point of consumers' view, is related to product quality and public acceptance of biomass activities. Social sustainability indicators are difficult to quantify and are often

qualitative.

Employment creation

1-4 Jobs/ CHP unit

Social Metric

Part or full time jobs, skilled, high level educated personnel.

The number of personnel depends on the unit's automation system, as well as on the scale.

Economic Sustainability

Economic sustainability is analyzed through internal functions of the company or by the external effects on society and environment.

- From the internal point of view the financial performance of a company and capability to manage assets are the most important factors leading to economic sustainability.
- Analysis of the external implications of economic sustainability management focuses on the company`s influence on the wider economy and how the company manages social and environmental impacts.

Microeconomics

- S kWel worst case scenario represents the analysis for the actual demo unit
- 40 kWel installed electrical capacity represents the most realistic and promising scenario for future commercialization (based on existing design)

		scenario- 40 kWel		
	Metrics	Value	Group LABORATORY OF CHEMICAL PROCESS AND PLANT DESIGN	
	Investment cost	~1,500	In case of system improvements:	
	per bioenergy unit	€/kWel	automated system performance, 3 full	
	Gross Profit	up to 75,000	time operators, 10units construction	
		€/year	(10kWel installed canacity) - best case	
1	Profitability	up to 56,000		
		€/year	scenario	

Macroeconomics

Best case scenario- 40 kWel

Metrics	Value
<i>Total value added</i> <i>to the economy</i> (labor income + taxed profit)	92,000 €/unit (annual basis)
Energy diversity	up to 100 kWel/unit investment

- The total value added reflects the added value per unit due to the additional income from sales and employment
- Change in diversity of total primary energy supply due to bioenergy.

 \triangleright

 \triangleright

SWOT (Internal factors)

Major Strengths	Major Weaknesses
Zero Waste and decreased GHG emissions process	Demand for Producer gas
Integrated technology	cleaning
Mature technology	Operation difficulties – System stabilization
Demonstrative operation	stabilization
High energy efficiency	Lack of demo data - lack extended pilot line runs
Ability to operate with different feedstock	 Economy of scale favors large
Potential co-processing with other wastes	scale operations
Potential subsidy & Enhanced feed in tariff	Economic viability dependent
Raw Material Availability	on regulated tariffs
Legislation for Renewables Energy Production	
Business opportunities	
Development of rural areas	
Energy independence	Biomass
Diversity of energy supply	
	AND PLANT DESIGN

SWOT (External factors)

Major Opportunities		Major Threats			
	Market growth perspectives		Competition with fossil fuels and other		
	Energy and climate change priority on policy making		renewable sources		
	Waste to energy- Towards independence from fossil fuel markets				
	Funding – Entrepreneurship		Biomass		
	Revenues are protected by feed in tariffs and by ensured access to the grid		LABORATORY OF CHEMICAL PROCESS AND PLANT DESIGN		
	Sustainable development				

Conclusions

- Combined heat and power production increases the overall energy efficiency.
- ✤ The total system energy efficiency reaches the value of 48%.
- The unit operates having low greenhouse gas emission profile.
- Social and economic metrics show the potential gains from the implementation of the present technological scheme in the local communities.
- The innovative proposed technological scheme seems of great potential.
- At the moment, commercial success depends on capital reduction instruments such as subsidies, electricity feed in tariff, biomass price, scale.

New Thinking

Waste glycerol- a biodiesel production by product

Incorporating waste glycerol with biomass

Fuel substitution with glycerol to upgrade the alternative fuel and to increase sustainability

Acknowledgements

Acknowledgements are expressed to the Greek Ministry for the funding the research project **GLY-CO Bio-Diesel** under the **COOPERATION program**

Contact; Prof. Anastasia A. Zabaniotou

E-mail: azampani@auth.gr

