TINOS 2015 – Sustainable solid waste management

Phosphate removal from secondary effluent of wastewater treatment: characterization and potential re-use as fertilizer of recovered precipitates

Raptopoulou C.¹, Kalaitzidou K.², Tolkou A.¹, Mitrakas M.², Palasantza P.-A.³ and Zouboulis A.¹

¹Department of Chemistry, Aristotle University of Thessaloniki, Greece
 ²Department of Chemical Engineering, Aristotle University of Thessaloniki, Greece
 ³AKTOR S.A., WWTP of "AINEIAS", N. Michaniona, Thessaloniki, Greece
 ISWM - TINOS 2015

PhoReSE

Theoretical background

Phosphate precipitates

Analysis Characterization

Phosphorus bioavailability

Diffusion into soil? Available to plants?

Phosphorus - P

Essential
Limited
Non-renewable
Non-substitutable

Phosphorus excess \rightarrow problem! \rightarrow eutrophication

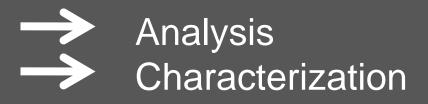
Desire: Phosphorus recovery

<u>Source</u> wastewater

Precipitates production

wastewater treatment plant of "AINEIA" (Conventional treatment plant) Wastewater samples

Batch precipitation tests – ferric phosphate precipitate


2 "Rapid Small Scale Column Tests" (RSSCTs) – calcium & magnesium salts Adsorbent: iron oxy-hydroxides (FeOOH)

residual concentration 1 mg P-PO₄³⁻ L⁻¹

Regeneration (NaOH) Effluent + $CaCl_2$ or MgCl₂ solution Aim of the study

Phosphate precipitates

Phosphorus content?

High enough to use as phosphorus recovery source?

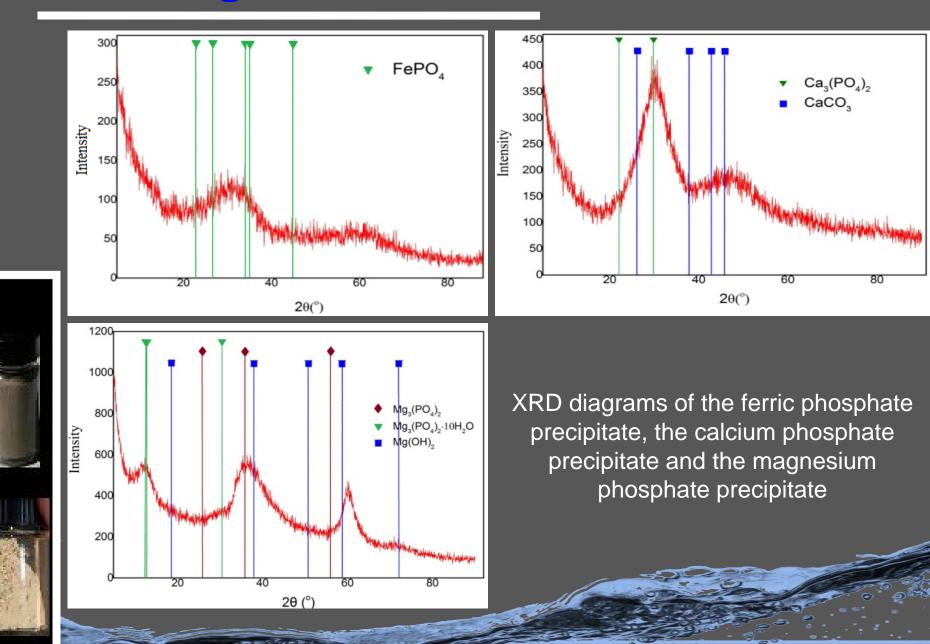
Bioavailability

Phosphorus available to soils? --> Chemical soil tests

Potential re-use as fertilizer?

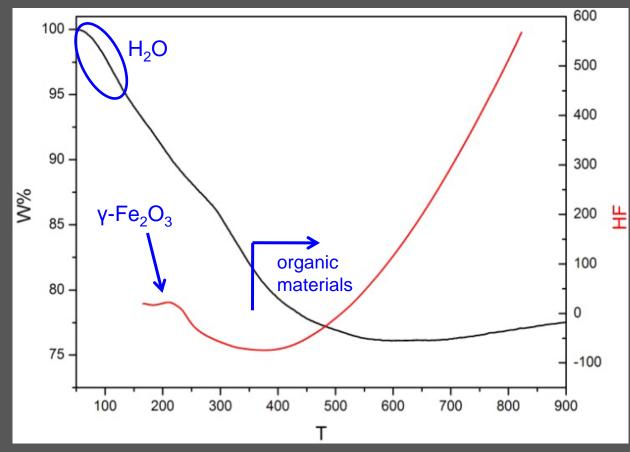
Composition of the precipitates

wt.% content	Ferric phosphate precipitate	Calcium phosphate precipitate	Magnesium phosphate precipitate
P-PO ₄ ³⁻	9.5	17.0	6.4
<i>F</i> e ³⁺	28.5	4.1	0.7
Ca ²⁺	0.3	12.7	0.05
Mg ²⁺	0.4	0.9	24.0


 precipitates' phosphorus content is within the commercial fertilizers' range (4-30%)

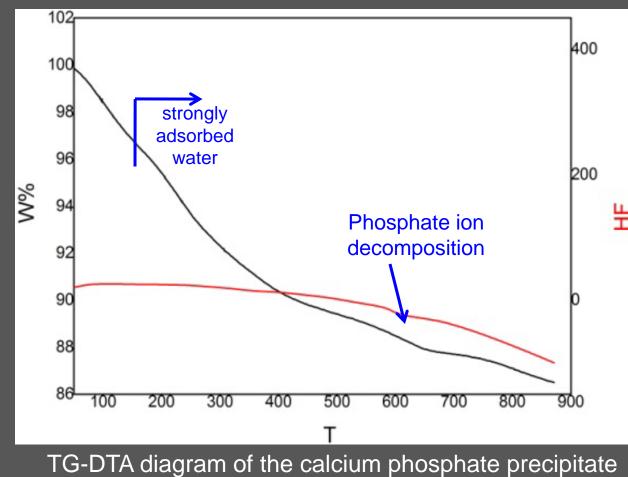
Carbon percentage

Ferric phosphate precipitate: 3 wt.%
Calcium & magnesium phosphate precipitates: 1 wt.%
Organic compounds
widely used products which are


not toxic

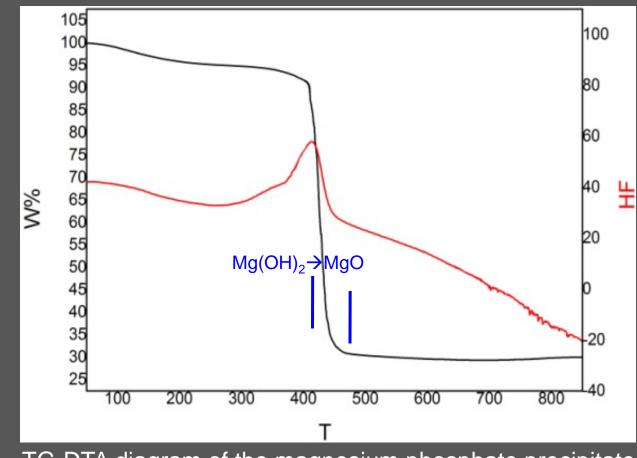
XRD - diagrams

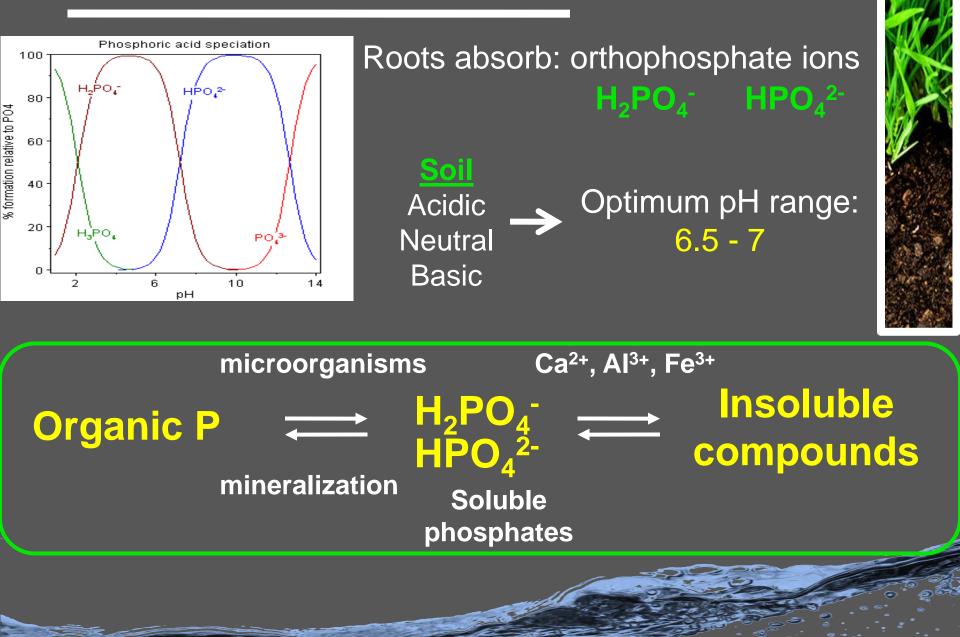
TG-DTA - diagrams


Ferric phosphate precipitate

TG-DTA diagram of the ferric phosphate precipitate

TG-DTA - diagrams


Calcium phosphate precipitate


TG-DTA - diagrams

Magnesium phosphate precipitate

TG-DTA diagram of the magnesium phosphate precipitate

Phosphorus and soil

Soil preparation

Soil samples: air dried, ground and sieved (> 2mm)

Acidic, pH = 4.5, 40 mg P/kg_{soil}

→ Basic, pH = 7.8, 5 mg P/kg_{soil}

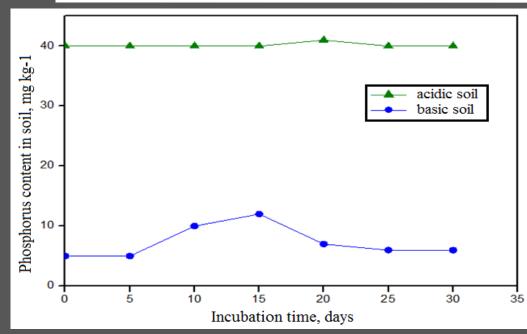
Desired phosphorus content: ~45 mg P/kg_{soil} Desired moisture: 10 – 20 wt.%

Soil samplesIncubation timeExtractable P measurements1 kg30 daysEvery 5 days

Soil extraction

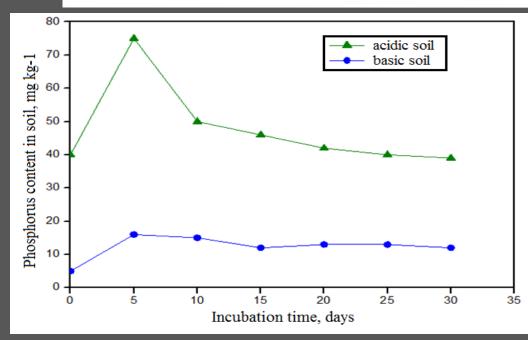
	Acidic soil	Basic soil
Method	Extraction	Extraction
Chemical	Mehlich 3	Olsen
Extractant	(CH ₃ COOH 0.2 M, HNO ₃ 0.013 M, NH ₄ F 0.015 M, NH ₄ NO ₃ 0.25 M каι EDTA 0.001 M)	(NaHCO ₃ 0.5 M)

- •2 g (acidic) ή 1 g (basic) soil
- •20 mL extractant



- •Shaking 250 rpm 10 min
- •Filter Whatman No. 42
- •Phosphate spectrophotometrical determination: stannous chloride method

Ferric phosphate precipitate

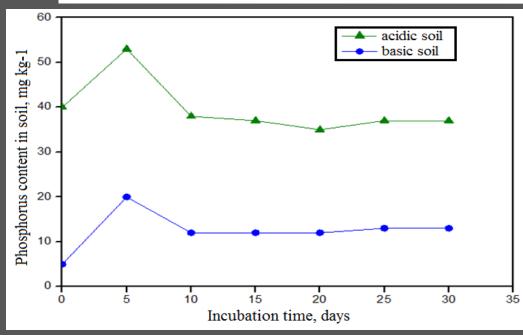

 <u>Acidic soil</u>: complexes between the little amount of the diffused phosphates and the Fe³⁺ and Al³⁺ of the soil
 Organic matter: might

affect beneficially phosphorus release

Phosphorus content variation in soil versus incubation time, after the addition of the ferric phosphate precipitate

	Acidic soil	Basic soil
Initial P content	40 mg P/kg _{soil}	5 mg P/kg _{soil}
Max P content	40 mg P/kg _{soil}	12 mg P/kg _{soil}
Increment	-	7 mg P/kg _{soil}
Time for max P content	-	15 d 🔍

Calcium phosphate precipitate


•Phosphorus – calcium complexes have high solubility in low pH

 basic soil: expected low availability due to reaction of phosphate ions with Ca²⁺ of the soil

Phosphorus content variation in soil versus incubation time, after the addition of the calcium phosphate precipitate

	Acidic soil	Basic soil
Initial P content	40 mg P/kg _{soil}	5 mg P/kg _{soil}
Max P content	75 mg P/kg _{soil}	16 mg P/kg _{soil}
Increment	35 mg P/kg _{soil}	11 mg P/kg _{soil}
Time for max P content	5 d	5 d 🚽

Magnesium phosphate precipitate

 slightly higher solubility of phosphorus – magnesium complexes in alkaline pH

 basic soil: expected low availability due to reaction of phosphate ions with Ca²⁺ of the soil

Phosphorus content variation in soil versus incubation time, after the addition of the magnesium phosphate precipitate

	Acidic soil	Basic soil
Initial P content	40 mg P/kg _{soil}	5 mg P/kg _{soil}
Max P content	53 mg P/kg _{soil}	21 mg P/kg _{soil}
Increment	13 mg P/kg _{soil}	16 mg P/kg _{soil}
Time for max P content	5 d	5 d 🚽

Conclusions

Precipitates: amorphous, presence of H₂O and phosphate ions significant amounts of phosphorus → potentially phosphorus recovery source +Fe³⁺: 95 mg P/g, +Ca²⁺: 170 mg P/g, +Mg²⁺: 64 mg P/g phosphorus content within commercial fertilizer range (4-30 wt.%)

Bioavailable phosphorus: release from precipitates to soil <u>Calcium and magnesium phosphate precipitates</u>: noteworthy phosphorus release same pattern: max content in 5 d and equilibrium after 10 d <u>Ferric phosphate precipitate</u>: low phosphorus diffusion only in basic soil

Acknowledgements

The financial support through the co-financed by the European Union and the Greek State Program PAVET, Project (PhoReSE) - "Recovery of Phosphorus from the Secondary Effluent of Municipal Wastewater Treatment", is gratefully appreciated.

This research project was supported by the approval of EYATh's S.A.-Department of Plants' Operation, Maintenance & Environmental Monitoring, which is gratefully appreciated.

Thank you very much for your

attention!!!

